
IITM-CS6840: Advanced Complexity Theory Mar 13, 2012

Lecture 38 : Circuit Lower Bound Problem

Lecturer: Jayalal Sarma Scribe: Rahul CS

Theme: In this lecture, we approach the question whether NP ⊆ P/Poly in the context
of boolean circuits. We also discuss some trivial size and depth lower bounds and Upper
Bounds of simple functions like PARITY, ADD, their circuits. The class NC.

We use the fact that P/poly = PSIZE. Now the question NP ⊆ P/poly could be rephrased
as asking whether there exists a polynomial size circuit for the NP−complete problem SAT.
Any superpolynomial lower bound for boolean functions in NP will prove NP 6⊆ P/poly.

We still cannot prove super-linear lower bounds for circuits with {∧,∨and¬} as basis.
Shannon showed that most of the boolean functions require Ω(2

n

n
) size. His arguments

were counting based. It does not characterize the circuit family. Count how many different
boolean functions of n variables can be computed using a given number of elementary
operations, and compare this number with the total number 22

n

of all boolean functions.

Later Lupanov came up with an upperbound saying that every Boolean function can be
implemented using (1 +O(1))2

n

n
gates.

If f |xi=0 6= f |xi = 1 we say that function is sensitive to every input(or the function is said
to be nondegenerated). In such circuits, we have trivial lower bound of S ≥ n − 1 on size
and d = ⌈log n⌉ on depth.

Suppose C be a minimal size circuit computing function f . Each gate has one outgoing edge
n input edges hence there will be s − 1 + n edges(final output won’t be counted) in total.
Each gate has atmost two incoming edges which means, no of edges ≤ 2s. s+(n− 1) ≤ 2s
⇒ s ≥ n− 1.

Open question: Is there a boolean function {fn}n≥0 that require ω(n
1+ǫ) size for any circuit

computing this function.

Another puzzle topic is, sorting has O(n log n) super linear algorithm. Do we have an
O(n log n) lower bound for circuits that does sorting? Ajtai and J. Komlos has come up
with O(n log n) sorting network.

Consider the following function Parity(x1, x2, ..., xn),

Parity(x1, x2, ..., xn) =

{

1 if (Σxi mod 2) =1
0 otherwise

With ⊕ gates having fanin two, Parity can be implemented using a circuit of depth log n and

38-1

number of gates n−1. If we change basis, size of circuit may change, but only by a constant
factor. This is because of the fact that, each element in one basis can be implemented by
a circuit for that element composed of elements from the other basis and vice versa.

Thus if we replace ⊕ gate with minimal gadgets composed of {∧,∨,¬} so that circuit
remains to be of depth O(log n) and size of O(n)

Addition of two n-bit numbers

Consider a circuit that computes the function ADDn : {0, 1}n × {0, 1}n ⇒ {0, 1}n+1. Let
(a1, a2, ...an) and (b1, b2, ..., bn) be the inputs and (s1, s2, ..., sn+1) all the binary numbers
are indexed from MSB to LSB.

The trivial circuit for addion has depth O(n) since computation of each bit require the
carry generated by the previous bit(the less significant bit). If si is the ith bit in the sum,
si depends on ai, bi, ci where ci is the carry from the addition of previous bits. and ai and
bi are ith bit in the input respectively.

It could be noticed that the ith carry bit takes the value 1, if it is generated in some previous
less significant bit j > i and got carried all the way from j to i. A carry bit get generated at
some index if both the inputs at that index are 1(ai∧bi = 1). Similarly carry get propagated
from index k to k + 1 if one of the input bits in the kth index are 1(ak ∨ bk = 1). Thus,

ci =
j>i
∨
j=0

[(aj ∧ bj) ∧ (∧
i<k≤j

(ai ∨ bi))]

We could reduce the depth of the circuit further by blockwise carry generation and prop-
agation. We divide the total number of bits in to blocks and we deal blocks in the same
way as bits. i.e. each block either generates carry or propagates carry to higher significant
blocks. And we implement the same add function within blocks.

This procedure gives a circuit of log n depth and size O(n3).

Complexity Classes

In the following section, we discuss few of the standard complexity classes.

class NC

N in NCstands for Nick Pippenger. This class represents a family of circuits with following
characteristics. All the circuits in the family are implemented using gates of bounded fanin.

38-2

NC1 = {L|function can be computed by polynomial size O(log n)depth circuits}

For example Addition and Parity are in NC
1 as we have already seen. In general, class NCi

is defined to be,

NCi = {L|function can be computed by polynomial size O(logi n)depth circuits}

Class NCis defined to be NC = ∪{i≥0}NCi. This class in general, is a measure of efficiency
of parallel algorithms.

Class CC0 represents class of circuits that are of constant depth, implemented using modm
gates.

38-3

