
IITM-CS6840: Advanced Complexity Theory March 26, 2012

Lecture No. 44 : Neciprouk’s Lower Bound
Lecturer: Jayalal Sarma M.N. Scribe: Sajin Koroth

Theme: Circuit Complexity-Lower Bounds using Restrictions

Lecture Plan: Today we will see Neciprouk’s method for lower bounding the formula size
of a function. This techniques utilizes the method of restrictions. We will also introduce
method of random restrictions and provide some motivation. Neciprouk’s lower bound
uses a counting strategy which relates the number of different functions produced by
restrictions on variables to, the number of times a variable occur in the formula (which
together form the number of leaves). After obtaining Neciprouk’s lower bound we will show
that it is tight for general functions by constructing an explicit function where Neciprouk’s
lower bound matches the upper bound. We will also introduce the notion of Random
Restriction and introduce Sabbottovskaya’s theorem which will be proved in the next lecture.

1 Neciprouk’s Lower bound for bounded fan-in formulae

Firstly we will define an appropriate notion of restriction to the function which will lead to
the lower bound. Let {v1, . . . , vp} be a partition of set of input indices, [n]. For a boolean
function f : {0, 1}n−{0, 1}. The number ri(f) is defined as the number of different functions
obtained by restricting f on variable indices other than vi. After a specific restriction
σ(xi = bi | i ∈

⋃
j∈[n]\vi {j}), the function f |σvi will be from {0, 1}li to {0, 1} where li is

|vi|. Note that for two different restrictions σ, σ′ outside vi the resulting restricted functions
f |σvi , f |

σ
′

vi could be the same. For example consider f to be the AND function of n
variables, and let the partition be vi = {nk (i − 1), . . . , nk }, that is we divide the variable
indices to consecutive sets of size k. Now choose any arbitrary vi, two restrictions σ, σ′

which are different for some xj (i.e. σ(xj) 6= σ
′
(xj)) and such that they both set at least

on variable to zero makes the restricted functions f |σvi , f |
σ
′

vi to be the constant function 0
as AND function is zero if any of the inputs are zero.

With the above definition of restrictions the following theorem can be proved.

Theorem 1. Over the basis Ω over gates of fan-in k, given a partition of the input indices
{v1, . . . , vp}

L(f) ≥ 1

k + 2

p∑
i=1

log(ri(f))

No. 44-1

where L(f) denotes the number of leaves in a formula which correctly computes f over Ω

The proof strategy is as follows, we will upper bound the number of different restricted
functions using the formula Tf for f over Ω, and the lower bound will be obtained in terms
of number of leaves of of the formula. Hence we can derive from such an upper bound a
lower bound on the total number of leaves in the circuit. Since the circuit is a formula it
will be a tree and the total number of nodes in a tree and number of leaves in a tree are
linearly related. Hence we get a lower bound for the size of the circuit.

Proof. Note that applying the restriction σ outside vi to f is equivalent to fixing inputs of
the formula Tf for input wires xl such that l comes from vj , j 6= i to the value σ(xl). The
tree Tf remains a tree, say T σf after the restriction on lesser number of gates which computes
f |σvi . To lower bound the number of different restricted functions we will use the following
definitions:

Definition 2 (Combinator). A combinator is a gate in T σf such that at most k − 2 of its
inputs are from outside T σf , in other words the sub-trees rooted at those l ≤ k − 2 inputs
does not contain an input wire which is not fixed by σ. The remaining inputs (at least 2)
come from within T σf .

By the above definition each combinator gate produce at most 2k−2 different functions
corresponding to different restrictions of its l ≤ k − 2 inputs from outside vi.

Definition 3 (Controller). A controller is a gate in T σf such that k − 1 of its inputs are
from outside T σf , in other words the sub-trees rooted at those k− 1 inputs does not contain
an input wire which is not fixed by σ. The remaning input (exactly one) comes from within
T σf .

Note that a controller gate is different from combinator because only one input is not fixed
and hence the function computed by such a function can be written as ag ⊕ b where a, b ∈
{0, 1} and g is the input to the gate from within T σf and a, b depends on the type of the
gate and the restriction σ. For example if the gate is an ∨ gate and the k− 1 input gatesare
set to 0 by σ, then a = 1, b = 0, because the output of the gate be just be g. Hence the
number of different functions a controller gate can produce is at most 4 corresponding to
various choices of a, b.

Also note that any gate in T σf is by definition is either a combinator or a controller. Figure
1 illustrates combinators and controllers.

Since Tf is a formula a variable can appear several times. Let ni denote the number of
times variables indexed by vi appears in Tf . Clearly ni ≥ li. Note that number of internal
vertices’s in tree of degree k is at most ni − 1 (this case happens when all internal nodes
are of degree 2, for k > 2 the number of internal nodes will be much lesser as expansion

No. 44-2

Figure 1: Restricted Formula T σf

will happen with a faster exponent). Hence the total number of vertices’s in T σf is upper
bounded by 2ni − 1 where σ is a restriction outside vi. The number of controllers in T σf
is upper bounded by the number of edges in T σf as each controller requires one edge from
within T σf . Number of combinators is upper bounded by half the number of nodes in T σf
because each combinator requires two vertices’s from T σf , and since T σf is a formula each
vertex has out-degree 1 and hence they cannot be part of another combinator. Hence the
total number combinator is at most ni − 1 . So the total number of functions which can
be produced by different σ′s are upper bounded by number of T σf which have at least one
gate computing a different function from each other. Hence the total number of restricted
functions is

ri(f) ≤ #′fs combinators produce ×#′fs controllers produce

≤
(

2k−2
)#combinators

× (4)#controllers

≤
(

2k−2
)ni−1

× (4)2ni−2

= 2(ni−1)(k−2)+(ni−1)4

= 2k+2(ni−1)

No. 44-3

Now let us analyze the following summation
∑p

i=1 log (ri(f))

p∑
i=1

log (ri(f)) ≤
p∑
i=1

log
(

2(k+2)(ni−1)
)

=

p∑
i=1

(k + 2) (ni − 1)

= (k + 2)

p∑
i=1

(ni − 1)

≤ (k + 2)

p∑
i=1

(ni)

= (k + 2)L(f) ∵ the leaves in tree Tf are the input variables

Hence we have proved the theorem.

2 Tightness of Neciprouk’s Lower bound

To prove the tightness we will give an explicit function f which requires Ω
(

n2

logn

)
size

using Neciprouk’s lower bound which also has a matching upper bound, i.e. a for-
mula which computes f of size O

(
n2

logn

)
. The function is the indirect address function

f : {0, 1}2n+logn−log logn → {0, 1} which is defined as follows : the input can be thought of
as a three tuple (a,A,B) where a of log

(
n

logn

)
bits, B is of n bits and A if of n bits also.

The input is interpreted as encoding of an index and two tables, A is a table of n 1−bit
entries, B is a table of n

logn log n bit entries and a is an index into table B, and B[a] intern
indexes a bit in the table A. Output of the function is thus A[B[a]]. Figure 2 illustrates this
interpretation of the input.

We will first show the upper bound, i.e. a formula computing the indirect addressing func-
tion. The key ideas is the following, we can construct a n : 1 MUX from a 2 : 1 MUX
recursively. To implement a n : 1 MUX we need to implement two n

2 : 1 MUX and a 2 : 1
MUX. Hence we get the following recurrence for the size of an n : 1 MUX,

T (n) = 2T
(n

2

)
+ 3

Hence we get that an n : 1 MUX can be built using O(n) gates (obtained by solving above
recurrence). For the first table addressing we need a n

logn : 1 MUX which requires size
O(n

logn) and for ith bit of selector bit we need 2i duplicate wires. Hence the total number
of duplications of selector bits is

∑logn
i=1 2i = O(n), and for each of these we will need the

n
logn : 1 MUX, hence the total size is O(n× n

logn). Hence the upper bound.

No. 44-4

Figure 2: Indirect Addressing Function

Now will show a matching lower bound using Neciprouk’s method. To get vi we will divide
the n bits which represent the contents of the table B into log n size equal chunks. Hence
there n

logn such partitions. For each setting of different A’s the functions which are restricted
every where other than one table entry of B (of log n bits) will have different output for
some input x. Hence the number of possible functions for the restriction is 2n and there are
at least n

logn of such partitions. Hence by Neciprouk’s method,

LΩ(f) ≥ 1

k + 2

n
logn∑
i=1

log 2n ≥ n2

(k + 2) log n

Hence we have proved that indirect addressing function is tight for Neciprouk’s method.

3 Random Restrictions

We can generalize our method of restrictions by introducing random restrictions. A random
restriction is a randomly picked function from the following family of functions δ : [n] →
{0, 1, ∗} where δ is interpreted as a restriction as follows :

δ(i) =


0 assign 0 to xi
1 assign 1 to xi
∗ xi is unassigned

Randomly choosing such a function is equivalent to for each index i ∈ [n] first tossing a coin

No. 44-5

to decide to leave it unassigned or to fix it, and then if it is decided to fix it, toss another
coin and fix the index according to the outcome of the toss.

Definition 4 (Random Restriction on all but k variables). It is the set of all functions δ
described as above with the additional requirement that exactly k indices are unassigned.

Rk = {δ | | {i | δ(i) = ∗} |= k}

It is interesting to know on a random restriction what is the expected size of the formula
obtained after applying the restriction. Let L(f) denote the minimum size of a formula
computing f . Then we are interested in the following quantity

Eδ [L (f |δ)]

Sabbotavskaya who was a student of Lupanov studied the problem of expected decrease in
formula size for a function f when hit with a random restriction. She with her seminal
paper in 1961 on formula lower bound based on random restrictions started off the sub area
of circuit lower bounds using random restrictions.

Even though we will not presenting Sabbotavskaya’s method in this lecture we will prove a
trivial lower bound on Eδ [L (f |δ)].

Consider the family Rk of random restrictions which leaves exactly k variables unassigned.
When we apply such a random restriction to the formula which achieves size L(f), each leaf
of it being an input variable xi (which might occur more than once) gets fixed to a value
with probability 1 − k

n . But since there could be multiple occurrence of the same variable,
given that a particular leaf is fixed the conditional probability that another leaf which also
represent the same input gets fixed is 1. Hence at most

(
k
n

)
L(f) leaves remains unassigned

on average (it could be much lesser also if there are multiple occurrences of a variable as
pointed earlier). Hence we get that

Eδ [L (f |δ)] ≤
(
k

n

)
L(f)

Sabbotavskaya improved the above lower bound to lower bound of the form below. People
have also proved the limits to such lower bounds by proving upper bounds on Γ.

Eδ [L (f |δ)] ≤
(
k

n

)Γ

L(f)

Theorem 5 (Sabbotavskaya (1961)).

Eδ [L (f |δ)] ≤
(
k

n

) 3
2

L(f)

No. 44-6

The following theorem can be proved from Sabbotavskaya’s theorem.

Theorem 6.

Pr
δ∈Rk

[
L(f |δ) ≥ 4

(
k

n

) 3
4

L(f)

]
≥ 3

4

Proof. Applying Markov’s Inequality to Sabbotavskaya’s theorem we get that

Pr
δ∈Rk

[L(f |δ) ≥ 4 [Eδ [L (f |δ)]]] ≤
Eδ [L (f |δ)]
4Eδ [L (f |δ)]

≤ 1

4

Hence it implies that

Pr
δ∈Rk

[
L(f |δ) ≥ 4

(
k

n

) 3
4

L(f)

]
≥
[
1− 1

4
=

3

4

]

Corollary 7. There exists a δ such that the formula size goes down by
(
k
n

) 3
4 factor.

The above corollary can be applied to obtain a lower bound for the parity function on n
inputs. Note that parity function on even any single input with other inputs fixed to any
binary string is not a constant function. Hence setting k = 1 for the above corollary we get
that there exists a δ ∈ R1 such that

L (f |δ) ≤ 4

(
1

n

) 3
4

L(f)

But since parity is a non-constant on any input and any δ ∈ R1, L(f |δ) ≥ 1. Combining
with the above inequality we get that

L(f) ≥ n
3
4

4

Coming back to the value of Γ , Karpchenkov in 1969 proved that Γ ≤ 2. Hastad in 1998
proved that Γ = 2 . We will discuss proof of Sabbotavskaya’s theorem in tomorrows lecture.

No. 44-7

