
CS6840: Advanced Complexity Theory Mar 29, 2012

Lecture 46 : Size lower bounds for AC0 circuits computing Parity

Lecturer: Jayalal Sarma M.N. Scribe: Dinesh K.

Theme: Circuit Complexity
Lecture Plan: Proof of the one of the first separation result in circuit complexity,
Parity 6∈ AC0 assuming H̊astad’s switching lemma

In this lecture, we shall see an important separation result in circuit complexity, Parity 6∈
AC0. That is, any circuit of constant depth having unbounded fan-in computing Parity
must have size exponential in the number of inputs. We shall state H̊astad’s Switching
lemma and a resulting lemma that shall be used in proving this result. The lemmas shall
be proved in the subsequent lectures.

This result was first proved in 1981 by Frust-Saxe-Sipser and independently by Ajtai. This
proof was later simplified by John H̊astad in 1986 using conditional probabilities. We shall
be seeing a simpler proof without using conditional probabilities due to Alexander Razbarov
(1987). Let us start of by defining the notion of a decision tree.

1 Decision Tree

Definition 1. A decision tree is a rooted binary tree with each internal node labelled with
variables and leaves labelled with one of 0 or 1.

A decision tree can also be seen as a model of computation. Consider a function f :
{0, 1}n → {0, 1}. A decision tree can compute this function in the following manner: On
input x, start with the root node v, check if the variable representing v say xi is 0 or 1. If
it is 0 go to its left child, if it is 1 go to its right child. The process is repeated till a leaf
is reached and the label on the leaf will be value of f(x). When we move to a node with
variable xi, we say that the variable xi has been queried. An example of a decision tree
computing f(x1, x2, x3) = (x1 ∨ ¬x2 ∧ x3) is shown in figure 1.

Let us now define the parameter of interest for a decision tree. One natural parameter to
ask is how many queries are needed to decide the value of f for a given input x. This can
be formalised as the depth of a decision tree.

46-1

01

x2

0 1

0 1

1010

1

00

x3x3

x1

Figure 1: Decision tree computing (x1 ∨ ¬x2 ∧ x3)

1.1 Decision Tree Depth vs DNF Term Size

Definition 2. (Depth) Depth of a decision tree computing a function f is defined as the
length of the longest path (in terms of the number of nodes/variables) from root to leaf. It
is denoted as |T (f)|.

It can be observed that decision trees of boolean function f is actually representing its truth
table. This leads to the following observation.

Observation 3. Given a decision tree, a DNF (CNF) corresponding to it can be written
down. Moreover the DNF (CNF) will be unique.

Once a decision tree is given one can construct a DNF corresponding to the function in
the following way: Look at the path that end in a leaf of label 1, write down the path
as conjunction of terms of variables/its negation to form clauses, take an OR of all the
clauses to get a DNF. Since there is a unique path between any two vertices in a tree, and
in particular between root and leaf, the resultant formula will be unique. A unique CNF
can also be obtained in the similar way.

What about getting a unique decision tree given a DNF of f? This is not always possible.
(For example we can have two decision trees computing (x1 ∧ x2) ∨ (¬x1 ∧ x2) one with x1

appearing as the root and other with x2 as the root.)

Hence it is necessary to define a canonical representation of decision trees computing f .
The idea is to give a fixed ordering for the literals appearing in each clause induced by the
ordering of indices of the literals. This forms a total order and is unique which enforces the
uniqueness of the canonical representation.

46-2

1.2 Canonical Decision Tree

Definition 4. Canonical decision tree of a boolean function f : {0, 1}n → {0, 1} can be
defined inductively as follows.

Let c1 ∨ c2 ∨ . . . ∨ cm be the DNF representation of f . Let the first non-trivial clause be
ci. Let xi1 , xi2 , . . . , xir , where r ≤ term size of DNF and i1 < i2 < . . . ir (the canonical
ordering). Construct a full binary tree (figure 2) with all nodes at level j getting the label
xij for 1 ≤ j ≤ r.

xirxir

xi2

10

1010

0 1

0 1 0 1

10

xi1

xi2

xi3 xi3 xi3 xi3≤ rm

≤ r

Figure 2: Canonical Decision tree

Note that some setting of the variable might have caused it it evaluate to 1. In that case,
the assignment to xi1 , xi2 , . . . , xir is said to have trivialised the function. It can also be that
this assignment simplifies some other clauses also. Now for all the assignments ρ that has
not trivialised f , we look at f |ρ and apply the same process.

For the base case which is 0 or 1, just attach a leaf node with appropriate label.

Since each clause can have term size at most r and since there are m clauses, depth of the
canonical decision tree can be at most rm.

1.3 Decision trees for Parity

Let us now ask the question

46-3

What is the decision tree depth required for Parity ?

Claim 5. Any decision tree computing Parityn must have a depth of n.1

Proof. (Adversarial argument) Suppose there exists a decision tree of depth < n computing
Parityn. Hence there must be a variable not being queried in every path. Hence on inputs
where the variable is flipped, output will be unaffected. But for Parity we know that every
flip of the input variable must affect the output. Hence the decision tree is not correctly
computing Parityn contradicting our assumption.

2 Exponential Size Lower Bounds for Parity

Here is the statement of the theorem Parity 6∈ AC0.

Theorem 6. If a circuit C with unbounded fan-in and constant depth d is computing
Parityn then, size of C must be 2Ω(n1/(d−1)). Since all AC0 circuits are polynomial sized,
Parity 6∈ AC0.

Let us look at a high level picture of the theorem and its proof. How could one show that
Parity 6∈ AC0 ? One way is to identify a property that Parity has which no circuit in AC0

has. Just now, we saw that Parity has long decision trees. But this property can easily be
verified to be true for ∧n and ∨n functions by the same argument. So this property will not
work directly.

But if we look at a random restriction2 ρ ∈ Rln getting applied to ∧n or ∨n it can be seen
that the chances that they do not get killed is really less (1

2n−l). But Parity function after a
restriction still remains as parity or its negation on the remaining input variables. It is this
property that will help in separating Parity from AC0. Let us now look at the following
lemma by H̊astad.

Lemma 7. (H̊astad’s Switching lemma) Let F be a DNF having term size ≤ r. Let
l = pn, p ≤ 1

7 . Let ρ ∈ Rln. Denote T (F |ρ) as the canonical tree of F |ρ. Then for any
s > 0,

Prρ∈Rl
n

[|T (F |ρ)| ≥ s] < (7pr)s

The switching lemma captures how does the application of a random restriction simplify
a DNF. Note that the above theorem also holds for F expressed in CNF. The following
lemma follows from H̊astad’s switching lemma.

1Note that the class of functions that require every decision tree computing f to have depth ≥ n are
called Evasive functions. Watch out for more about these functions in our course presentations!

2Recall Rl
n = {ρ : [n]→ {0, 1, ∗} | No of variables left unassigned = l}

46-4

Lemma 8. Let f : {0, 1} → {0, 1}, C be an AC0 circuit computing f of size S of depth d.
Define height of a gate g in C to be the maximum number of AND or OR gates from g to
any input. Now, for 0 ≤ i ≤ d− 1, let

ni+1 =
n

14(14 logS)i

If ni ≥ logS for 1 ≤ i ≤ d, then there exists a ρ ∈ Rni
n such that for every gate g below

height i,
|T (g|ρ)| ≤ logS

That is, every gate below i can be computed by a decision tree of depth logS.

2.1 How does this shows that Parity 6∈ AC0?

By lemma 8, we can get a proof for Parity 6∈ AC0. Here is the idea. We know that given
a circuit C in AC0, a random restriction is likely to simplify the circuit. By “simplify” we
mean that the circuit after a restriction can be computed by a small depth decision tree.

What lemma 8 guarantees is the existence of such a restriction ρ for level3 i that sets all
but ni variables. Here is how. H̊astad’s lemma after plugging in appropriate parameters
guarantee that for a given gate g at level ≤ i,

Prρ[Depth of T (g|ρ) ≥ logS] <
1

S

Hence by union bound,

Prρ[∃g : Depth of T (g|ρ) ≥ logS] < 1

Equivalently,
Prρ[∀g : Depth of T (g|ρ) < logS] > 0

Thus by a probabilistic method argument, there indeed exists a ρ such that for every gate
at level ≤ i, g|ρ has depth ≤ logS. Now, by repeated application of the such restrictions
at each level, we simplify the unbounded fan-in gates by replacing them with small depth
circuits.

Without loss of generality we can always assume that the AND and OR gates of the AC0

circuit alternates (If not combine the gates of same type appearing at consecutive levels.
This is always possible since we allow unbounded fan-in).

At level i, we apply the lemma and get a decision tree of depth logS. We replace the gates
by equivalent DNFs. Say for the gates at level i, the parent of the gates are OR gates. Since
DNF will have a OR at the top, these two can be merged resulting in decrease in depth by
1.

3We will be using level and height interchangeably.

46-5

∨ ∨ ∨

∧∧∧∧

∨∨∨

∧ ∧ ∧ ∧

∨∨∨ ∨ ∨ ∨ ∨

i− 1

DNFDNFDNF DNF

g

i

Figure 3: Application of Lemma 8

Suppose the parent gate is an AND what can be done? We replace it the CNF corresponding
to the decision tree. Since, switching lemma holds for CNFs also, we can safely do this. Now
again, there will be two AND gates appearing at consecutive levels which can be merged
to get a decrease in height (Essentially we are “switching” between the two normal forms
as we go up the levels). Applying the lemma d − 2 times we end up in a decision tree of
depth O(logS) that looks at nd−1 variables. Existence of such a restriction ρ achieving this
is also guaranteed. Now, plug in the back the equivalent circuit. Since F computes parity,
F |ρ that looks at nd−1 variables will still be computing the parity function (or its negation).
But we know that parity function requires a decision tree of depth ≥ nd−1. Hence, we have

logS ≥ nd−1

logS ≥ n

14(14 logS)d−2

giving us,

S ≥ 2
1
14(n

14)
1/(d−1)

or S = 2Ω(n(1/(d−1)) proving our main theorem 6.

46-6

