IITM-CS6845: Theory Toolkit

March 31, 2012

Lecture 48 : Håstad's Switching Lemma

Lecturer: Jayalal Sarma M.N. Scribe: Prashant Vasudevan

THEME: Håstad's Switching Lemma LECTURE PLAN:Prove Håstad's Switching Lemma

Lemma 1 (Håstad's Switching Lemma). Let F be a DNF formula of term size r on n variables. Then, for s > 0, l = pn, $p \leq \frac{1}{7}$,

$$\frac{|\{\rho \in R_n^l : |T(F|_\rho)| \ge s\}|}{|R_n^l|} < (7pr)^s$$

(For definitions, refer previous lecture notes.)

We shall need further the following definitions:

- 1. $S = \{ \rho \in R_n^l : |T(F|_{\rho})| \ge s \}.$
- 2. $stars(r, s) = \{(\beta_1, \beta_2, \cdots, \beta_k) \mid \beta_i \in \{*, -\}^* \text{ such that total number of } * \leq s \text{ and each } \beta_i \text{ has at least one } * \}.$

We prove the lemma by establishing a one-to-one mapping,

$$\phi: S \to R_n^{l-s} \times stars(r,s) \times \{0,1\}^s$$

and counting the right hand side, which shall give us an upper bound on |S|.

Suppose the formula in canonical DNF is $F = C_1 \vee C_2 \vee \ldots$ Let ρ be any restriction in S, and π be the path consisting of the first s edges of the lexicographically first root-to-leaf path in the canonical decision tree of $F|_{\rho}$ that is of length at least s. Let C_{ν_1} be the first clause in F that is not falsified by ρ . The variables of this clause are those that appear at the top of the canonical decision tree for $F|_{\rho}$.

Let π_1 be the part of π that deals with variables that are present in C_{ν_1} . Let σ_1 be the path in the tree corresponding to the unique assignment of variables that satisfy C_{ν_1} . Note that as there is no clause that is made true by the assignment corresponding to π (because it is part of a longer path), π_1 is different from σ_1 . Also define $\beta_1 \in \{*, -\}^r$ such that β_{1i} is * if the *i*th variable of C_{ν_1} is set by σ_1 and - otherwise. Note that β_1 has at least one * because C_{ν_1} is not falsified before σ_1 comes in. Also notice that given C_{ν_1} and β_1 , we can reconstruct σ_1 .

After the above step, consider the resulting tree for $F|_{\rho\pi_1}$ and do the same to obtain σ_2 , π_2 , β_2 for the then first unfalsified clause C_{ν_2} and so on till π is exhausted and we have $\pi = \pi_1 \pi_2 \dots \pi_k$, $\sigma = \sigma_1 \sigma_2 \dots \sigma_k$ and $(\beta_1, \beta_2, \dots, \beta_k)$. Now define $\delta \in \{0, 1\}^s$ such that δ_i is 0 whenever $\pi_i \neq \sigma_i$ and 1 otherwise.

Define the promised mapping to be $\phi(\rho) = (\rho\sigma, (\beta_1, \beta_2, \dots, \beta_k), \delta)$. That the co-domain is as specified above is straightforward. To see that the mapping is one-one, we see that we can reconstruct ρ uniquely given its image - we can find C_{ν_1} as defined above by finding the first clause in F that is satisfied by the restriction $\rho\sigma$. Using this clause and β_1 we can find σ_1 which along with δ gives π_1 . Next, replace σ_1 by π_1 and repeat to get σ_2 and π_2 . Proceeding along these lines gives σ , removing which from the restriction $\rho\sigma$ gives ρ uniquely.

In order to count the number of elements in the co-domain of ϕ , we need the following lemma:

Lemma 2. $|stars(r,s)| < (r/ln2)^s$

Proof. By induction, we show $|stars(r,s)| < \gamma^s$ for γ such that $(1+1/\gamma)^r = 2$). For s = 0, the statement is trivially true.

Suppose for some s, the statement is true for all values less than s. Then, let β_1 have i *'s. This requires $(\beta_2, \ldots, \beta_k)$ to have (s - i) *'s. This procedure gives us the following:

$$|stars(r,s)| = \sum_{i=1}^{\min(r,s)} {r \choose i} |stars(r,s-i)|$$
$$\leq \sum_{i=1}^{r} {r \choose i} \gamma^{s-i}$$
$$= \gamma^{s} \sum_{i=1}^{r} {r \choose i} (1/\gamma)^{i}$$
$$= \gamma^{s} [(1+1/\gamma)^{r} - 1] = \gamma^{s}$$

As $(1 + 1/\gamma)^r < e^{r/\gamma}$, $2 < e^{r/\gamma}$ and $\gamma < (r/ln2)$. Thus, $|stars(r,s)| < (r/ln2)^s$.

-	_	_
ι.		

Using above results, we have:

$$\begin{aligned} \frac{|S|}{|R_n^l|} &\leq \frac{|R_n^{l-s}||stars(r,s)|2^s}{|R_n^l|} \\ &\leq \frac{\binom{n}{l-s}2^{n-l+s}}{\binom{n}{l}2^{n-l}} \left(\frac{2r}{ln2}\right)^s \\ &\leq \frac{l^s}{(n-l+s)^s}2^s \left(\frac{2r}{ln2}\right)^s \\ &\leq \left(\frac{4pr}{(1-p)ln2}\right)^s \end{aligned}$$

(As l = pn.)

For p < 1/7, this is at most $(7pr)^s$, proving the Switching Lemma.