
CS6840: Advanced Complexity Theory April 10, 2012

Lecture 52 : Monotone Circuit Lower Bounds

Lecturer: Jayalal Sarma M.N. Scribe: Dinesh K.

Theme: Circuit Complexity
Lecture Plan: Monotone functions and circuits. CLIQUE requires exponential size
for any monotone circuit computing it. The overall strategy. Clique Indicators and
Approximators. Positive and negative inputs. Sunflower Lemma.

In this lecture, we shall show a super polynomial lower bound for a function in NP computed
by monotone circuits.

Recall the fundamental question that we were trying to answer in the scenario of P =?NP.

“Does a language in NP requires super polynomial sized circuits computing them ? ”

Suppose we were able to show that there is an L ∈ NP that is not in PSIZE then by the
results seen earlier,

• PSIZE = P/poly

• P ⊆ P/poly

we have L 6∈ P/poly and therefore not in P thereby separating P and NP. Hence the holy
grail would be to find such a function in NPthat requires very large sized circuits. In this
lecture, we show the following result.

Theorem 1. Any monotone circuit computing clique number of graph requires exponential
size.

Note that if the above theorem can be proved for any general circuit then also it implies
P 6= NP since clique is NP-complete.

1 Monotone Circuits and Clique function

Recall the definition of monotone functions.

52-1



Definition 2. A function f : {0, 1}n → {0, 1} is said to be monotone if ∀x, y ∈ {0, 1}n

x ≤ y ⇐⇒ f(x) ≤ f(y)

where ≤ is defined on binary strings as usual.

If we consider the relation ≤ on {0, 1}n, they form a poset with 1n at the top and 0n at
the bottom and strings in {0, 1}n forms chains (The chains can be visualised as paths in an
n-dimensional hypercube from corners 0n to 1n).

1n

On

1

0
0

1 0

1
0

1

Value is 1

Value is 0

Figure 1: Monotone functions : A visualisation

Now, for any monotone function, there is a point where the function outcome changes from
0 to 1 and from there, as we go up the chain, the value remains the same.

Note that monotone circuits does not require NOT gates. This is because the functions that
are of interest for us never change their value from 1 to 0 once they have reached one. Thus
any monotone circuit requires only AND and OR gates gates. By Post’s characterisation
(lect), AND and OR gates can only compute monotone functions. Hence functions is
monotone iff they are computed by AND and OR gates.

Also note that unlike our previous circuit characterisations where we had graph theoretic
restrictions (size/depth/degree), for monotone circuits we are imposing a functional restric-
tion.

Now consider the nth slice of the CLIQUE language.

52-2



Definition 3.

CLIQUEk,n = {(x1, x2, . . . , x(n2)
)| Graph G represented by the tuple has a clique of size k }

Here xi corresponds to the ith edge in the graph for i ∈ {1, 2, . . . ,
(
n
2

)
}.

The following claims holds true for CLIQUEk,n.

Claim 4. CLIQUEk,n is monotone.

Proof. Key observation is that adding an edge does not destroys a k-clique. Also, adding
an edge corresponds to a change in input bit from 0 to 1. Thus, if the input bit is flipped
from 0 to 1, the outcome will continue to remain 1 if it is already 1 and never gets down to
0. Hence the claim follows.

Claim 5. There exists a trivial monotone circuit computing clique

Proof. Construct a circuit that looks at k possible inputs, AND them and takes an OR over
all the

(
n
k

)
possibilities. It can be easily verified that the circuit computes clique function

CLIQUEk,n and the size of the circuit will be
(
n
k

)
∼ nk.

For k = n, this will be super polynomial. It however turns out to be that we do require at
least super polynomial sized monotone circuits to compute clique functions.

Theorem 6. Any monotone circuit computing CLIQUEk,n must have a size at nΩ(
√
k).

In particular for k = n− 1, the size must be at least n
√
n = 2Ω(n logn)

Before proceeding to the proof, let us ponder over the following thoughts.

• We now know of a super polynomial lower bound albeit for a special circuit class.

• Now, suppose we have a transformation function that can convert a polynomial sized
circuit that uses NOT gates to another polynomial sized circuit without NOT gates
computing the same function. What could this imply ?

• Existence of such a transformation directly imply P 6= NP. This is because if P were
equal to NP then CLIQUE has polynomial sized circuits computing it and by the
size preservation transformation, we can get a monotone circuit computing CLIQUE
function of polynomial size. But this directly contradicts theorem 6.

• Does such a transformation exists ? The question has been asked by Razbarov and
Wigderson who proved the following result.

52-3



Theorem 7. There exists a monotone function in P that requires exponential size for
any monotone circuit computing it.

This rules out the existence of such a transformation from non-monotone to monotone
circuits preserving the size.

• Monotone circuits seems to be some what handicapped essentially due to the absence
of negation gates. Say if we allow constant number of negations gates, can we still
prove the lower bound ?

Observe that for any circuit computing an function f on n inputs needs O(n) gates
only. This is because all the negation gates can be pushed down to the leaf level
by applying de-Morgan’s law. Hence providing O(n) negation gates will make the
monotone function too powerful. Can we manage with O(log n) gates ? The answer
to this question has been proved in affirmative by Fisher who showed,

Theorem 8. Any circuit computing f on n inputs needs only O(log n) negation gates.

Hence, if we are able to prove the lower bound result for monotone circuits allow-
ing O(log n) gates then P and NP can be separated. (The current best bound is
known with O(log(log n)) negation gates. That is, even with log(log n) NOT gates
CLIQUEk,n cannot be computed by monotone polynomial sized circuits.)

2 Building tools for proving theorem 6

The proof idea is the following. Let C be a monotone circuit computing CLIQUEk,n.

1. Start by “approximating” each gate in the circuit C by a gadget that approximates
the output of that gate.

2. Start approximating the leaf nodes and move up replacing each gate by an approxi-
mator ending up with an approximator C ′ for the root of the circuit.

3. We shall use this approximation to argue the size of C. First define two set of inputs
called (a) Positive inputs, (b) Negative inputs and shall see the error that C ′ makes
relative to C.

4. We shall argue that the error introduced by replacing each gate by the approximator
is small.

5. We shall then argue that, overall, the circuit C ′ (that is the approximated output of
root) is making too much errors.

6. Hence one can conclude that the number of gate in the circuit C must be too many
in number.

52-4



Positive inputs They are graphs on n vertices having a k clique and n−k isolated vertices.
There are

(
n
k

)
of them. On these graphs the original circuit C will evaluate to 1.

Negative inputs They are graphs on n vertices which are (k−1) partite complete graphs
(They contain k − 1 cliques). Number of such graphs will be (k − 1)n (Counting is
based on the colouring of vertices, i.e (k − 1) ways to colour each of the vertices.
Though this leads to over counting, we will be using this value only to lower bound
errors).

The clique approximator function and (m, l) approximator is defined as follows.

Definition 9. For an X ⊆ [n], clique indicator function,

IX =

{
1 If graph induced by subset X forms a clique

0 Otherwise

An (m, l) approximator is defined as,
r∨

i=1

IXi

where X1, X2, . . . , Xr ⊆ [n], |Xi| ≤ l, r ≤ m.

We shall be requiring the following lemma proved by Erdos and Rado.

Lemma 10. (Sunflower lemma) A sunflower of p petals is defined as, Z1, Z2, . . . , Zp ⊆ [n]
such that ∀ i, j, i 6= j, Zi ∩Zj = Z. The sets {Zi} are the petals and Z is called as the core.

Let F ⊆ 2[n], integers l, p, such that for all Si ∈ F , |Si| ≤ l and |F | > (p − 1)l × l!, then
there is a sunflower of p petals.

Proof. (By induction on l) For l = 1, we have, |Si| ≤ 1 and |F | > (p − 1). Hence |F | ≥ p.
The p petals will be the singleton sets, each containing an element of F , with core being
empty. Hence the base case holds.

Suppose the result holds for l > 1. That is, for F ⊆ 2[n], ∀ i, Si ∈ F has |Si| ≤ l and
|F | > (p− 1)l × l!, there is a p-petal sunflower.

Now, consider the F ⊆ 2[n] with |F | > (p − 1)l+1 × (l + 1)! with every |Si| ≤ (l + 1). Let
Z1, Z2, . . . , Zq be the maximal number of disjoint sets in F . If q ≥ p, then we already have
p petals with an empty core and the lemma holds for (l + 1).

If q ≤ p− 1, consider the set

Z =

p−1⋃
i=1

Zi

52-5



Also

|Z| =
p−1∑
i=1

|Zi| ≤ (p− 1)(l + 1)

To reduce to the inductive case, we need to show that there exists an element in Z that
appears in “many” of the sets in F . To do this, observe that every element in Z will be
covered in some set of F which follows from maximality of Z1, Z2, . . . , Zq

1. Now, the average
number of sets in which any element in Z appears is

|F |
|Z|

>
(p− 1)l+1(l + 1)!

(p− 1)(l + 1)
= (p− 1)ll!

By pigeon hole principle, there must be an element e ∈ Z that appears in at least (p−1)l×l!
sets. Now look at the sets F ′ obtained by removing e from all the sets in F containing e.
Hence |F ′| > (p − 1)l × l! and |S′i| will be at most l. By induction hypothesis, there is
sunflower of p petals in F ′. Now by adding back the element e to the petals, we get a
sunflower to the set F .

1If there exists a set Z′ in F that does not contain any element in Z, then {Z1, Z2, . . . , Zq, Z
′} will form

q + 1 disjoint sets contradicting the maximality of Zis

52-6


