
CS6840: Advanced Complexity Theory April 12th, 2012

Lecture 52 : Monotone Circuits Lower Bounds Contd.

Lecturer: Jayalal Sarma M.N. Scribe: Princy Lunawat

Theme: Circuit Complexity
Lecture Plan:This lecture forms the continuation of the proof of a monotone circuit
lower bound on CLIQUE(k,n). We start with a quick revision of the (m, l)-approximator
gadget used to analyze the clique circuit in a given graph and the statement of the sunflower
lemma used in the course of the proof (from the last lecture) followed by a detailed proof
of the lower bound.

Theorem 1. Any monotone circuit computing CLIQUE(k,n) requires size n
√
k.

Proof Idea

The main idea of the proof is to inductively build a circuit for CLIQUE(k,n) using a gadget
referred to as an (m, l)-approximator instead of a gate at the cost of incurring some error.
We estimate the error at each insertion of an approximator versus the net error incurred
at the root of the circuit. We will observe that while the former causes a small error per
approximator, in the latter, the error is too high, hence concluding that the no. of gates
has to be too high.

Proof. Let C be a monotone circuit computing CLIQUE(k,n) on the given input graph
G = V,E.Let the input graph be specified as set of indicators I{u,v} which takes a value 1 iff
u, v∈ E. We define a clique indicator as follows: IX = 1 if the vertices indexed by X ⊆ V
form a clique. Then the following expression trivially finds whether a clique of size k exists
in a graph:

The size of this gadget is too huge(O(nk) where k depends on n). Hence we look for
alternatives to design a monotone circuit, where in comes the (m, l)- approximator defined
as follows:

r∨
i=1

IXi |Xi| ≤ l r ≤ m
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1 Construction of the Clique circuit C ′

Now, we inductively create a new circuit C ′ for the clique problem using (m, l)-
approximators defined above. The construction is by induction.

Basis:

At the leaves we employ the clique indicator of each edge of the graph itself as inputs to
our circuit, that is, IXi where |Xi| = 1. Hence no error is incurred at the leaves. We can
see that the this is a trivial (m, l)- approximator.

Induction:

• OR Gate:
Consider an OR gate with k input (m,l)approximators. We can can reduce than
fan-in of this gate by taking the composition of OR’s at the cost of a lg(k) increment
in depth of the circuit. Let the input to the final OR- gate after the composition be
two (m, l)- approximators. The expression at the OR- gate is given by,

r∨
i=1

IXi ∨
s∨

i=1

IYi |Xi| ≤ l,r ≤ m,|Yi| ≤ l,s ≤ m

⇒
r+s∨
i=1

IDi |Di| ≤ l,r + s ≤ 2m (1)

Hence the result is a (2m, l)- approximator. Observe that no error is incurred in so
far.We know remove some of the Di’s from the approximator input to achieve a (m, l)-
approximator, of course incurring some error. The Di’s to be removed are determined
by the sunflower lemma stated below:

Lemma 2. Let F be a family of subsets of [n], each of size ≤ l. If |F | > (p − 1)ll!
, then there exists a sunflower with p petals in the family. That is, there exist sets
Z1, Z2, . . . Zp ∈ F and a core Z such that

Z =

p⋂
i=1

Zi

and
∀1 ≤ i, j ≤ p, (Zi − Z) ∩ (Zj − Z) = φ

We use the above lemma in our context as follows:
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– From (1), we have a family F of r + s ≤ 2m subsets Di, |Di| ≤ l. Suppose,
|F | > m(If |F | ≤ m, we already have an (m, l)-approximator). By setting
the appropriate values of p and l in the lemma, we get Z1, Z2, . . . Zp among
D1, D2 . . . Dr+s with a core Z.

– We replace all OR terms IZ1 , IZ2 , . . . IZp in (1) with the single core IZ , of course
incurring some error. Essentially, we pluck the sunflower and replace it with the
core.

– We thereby reduce the number of terms to r + s− p+ 1. If the resulting family
size is still ≥ m we, re-apply again and again, until the no of terms is ≤ m and
the lemma cannot be applied anymore.

Hence, at the end of the above procedure, we have succeeded in converting an OR-
gate into an (m, l)-approximator. Observe that here we had to deal with only the
number of Di’s while the size of each Di was still bounded by l.

• AND- gate
As before, let the input to the final AND- gate after the composition be two (m, l)-
approximators.The expression at the AND- gate is given by,

r∨
i=1

IXi ∧
s∨

i=1

IYi |Xi| ≤ l,r ≤ m,|Yi| ≤ l,s ≤ m

⇒
r∨

i=1

s∨
j=1

(
IXi ∧ IYj

)
(2)

We convert the above into the desired (m, l)-approximator form as follows:

– Replace
(
IXi ∧ IYj

)
in (2) by IXi∪Yj = IDk

. While the former returns a 1 when
the vertices of X and Y form a clique each, the latter returns 1 when vertices of
X and Y together form a clique, hence, an error is incurred, but the expression
has the form of an approximator now:

rs∨
i=1

IDi rs ≤ m2, |Di| ≤ 2l

Hence we have a (m2, 2l)-approximator with us.

– To reduce 2l to l, we simply drop all the Di’s such that |Di| > l.

– To reduce rs ≤ m2 to m, we apply the sunflower lemma again and again, as
before until the size reduces to m.

At the end of this inductive process for all gates in the circuit C computing CLIQUE(k,n),
we have a new circuit C ′ consisting of only (m, l)-approximators computing CLIQUE(k,n)

with some error.
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2 Analysis of Error bounds in C ′

We now analyse the error bounds for C ′ on special kinds of inputs called Positive and
Negative inputs.

• Positive Input: A graph G is a positive input the circuit C deciding CLIQUE(k,n)

if it has exactly one clique of size k and n− k isolated vertices. Clearly, there are
(
n
k

)
such graph instances, and they output 1 when given as an input to C.

• Negative Input: A graph G is a negative input the circuit C deciding CLIQUE(k,n)

if it is a complete (k−1)-partite graph. That is, the set of vertices are partitioned into
(k − 1) disjoint subsets. There is no edge between any to vertices is the same subset,
where as between any two subsets, all possible edges are present (A generalization
of the complete bipartite graph.). An example is shown below. Clearly, there are
(k − 1)n such graph instances and and they output 0 when given as an input to C,
since the maximum clique size is only k − 1.

Figure 1: A complete k-partite graph with k = 3
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We now prove an important lowerbound on the number of inputs to the approximator circuit
C ′ with respect to the positive and negative inputs, for which the circuit makes an error.

Lemma 3. Either C ′ is 0 on all positive inputs
(
n
k

)
or C ′ is 1 on at least

(
1− (l

2)
k−1

)
(k−1)n

negative inputs.

Proof. The output of C ′ is of the following form:

C ′ =
r∨

i=1

IXi

If C ′ is 1 on a positive input then there exists at least one IXi = 1. Hence, we calculate the
probability of C ′ evaluating th 1 conditioned on the existence of such an IXi :
Choose a negative input randomly,

Pr(C ′ = 1) ≤ Pr(IXi = 1)

= 1− Pr(IXi = 0)

On a negative input, the probability of IXi = 0 is the same as the probability that at least
of the vertices of Xi fall into the same partition in the negative input graph.

Pr(IXi = 0) ≤
(
l

2

)
1

k − 1

Pr(C ′ = 1) ≤

(
1−

(
l
2

)
k − 1

)

Hence, the number of negative inputs where C ′ = 1 is given by the above probability
multiplied by the number of negative input instances:(

1−
(
l
2

)
k − 1

)
(k − 1)n (3)

The next two lemmas prove an upper bound of the number of errors incurred by our
construction of C ′ in terms of the circuit size C. As mentioned in the proof idea, to meet
the lowerbound on (3), the size of C will be very high (We will show this formally. )

Lemma 4. On positive inputs C fails to evaluate to 1 on almost size(C).m2
(n−(l+1)
k−(l+1)

)
inputs.
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Proof. We will analyze the error incurred on both OR and AND gates. Recall, by our
construction of C ′, each OR-gate is converted to an (m,n)-approximator by plucking a
sunflower Z1, Z2, . . . Zp from the inputs to the OR-gate and replacing it by the core Z. If
the final output of the circuit is 1 due to a IZi = 1, then it remains the same when replaced
by IZ , because, if the vertices of Zi form a clique then the vertices of any set Z ⊆ Zi also
forms a clique. Hence, no error is incurred .
For an AND- gate, we discard all inputs to the gate with length |Di| > l and reducing
number of inputs from rs to m by plucking a sunflower. The latter doesn’t cause any error
as argued before.Discarding an input with |Di| > l will only cause an error in graphs which
have a clique of size greater than l. The number of inputs to an AND gate is rs ≤ m2.
Hence the total number of such positive input graph instances where an error is incurred
at an AND-gate is given by:

m2

(
n− (l + 1)

k − (l + 1)

)
1

Now, since the number of AND-gates in a circuit C is bounded by size(C), we upperbound
the number of positive input graph instances where C ′ makes an error to:

≤ size(C).m2

(
n− (l + 1)

k − (l + 1)

)

Lemma 5. On negative inputs C fails to evaluate to 0 on almost

size(C).m2

(
(l
2)

k−1

)p

(k − 1)n inputs.

Proof. OR-gate: Contrary to the previous situation, applying sunflower lemma does lead
to an error in the negative input case because if we replace an IZi = 0 with IZ , the latter
might not evaluate to 0,(the absence of a clique on a set of Zi vertices doesn’t guarantee
the same on a subset Z ⊆ Zi).We analyze the probability of this error:

Pr(

p∨
i=1

IZi = 0 ∧ IZ = 1)

≤ Pr(

p∨
i=1

IZi = 0|IZ = 1)

=
p

Π
i=1

Pr(IZi = 0|IZ = 1)

=
p

Π
i=1

Pr(IZi = 0)

1l+1 vertices are already in the clique, choose the remaining k-(l+1) to form a k-clique
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The above expression is the probability that none of the sets Zi, |Zi| ≤ l form a clique on
the negative instance, that is, at least 2 of the vertices fall into the same partition in the
(k − 1)- partite graph. This probability is given by,( (

l
2

)
k − 1

)p

(4)

AND-gate: In this case, as per our construction, we discard all Di’s with |Di| > l and apply
sunflower lemma to bring down rs ≤ m2 to m. The former does not incur any error on a
negative input, since this can almost cause the output of the AND to go from 1 to 0, which
still cannot cause an error on the desired output for the negative input graph, that is , 0.
Now, the sunflower lemma might be applied almost O(m2) times to reduces the number of
inputs from almost m2 to m, each time incurring an error with probability given by (4).
Hence the total number of such negative input graph instances where an error is incurred
at an AND-gate is given by:

m2

( (
l
2

)
k − 1

)p

(k − 1)n

/footnote(k − 1)n is the total number of negative graph instances. Now, since the number
of AND-gates in a circuit C is bounded by size(C), we upperbound the number of negative
input graph instances where C ′ makes an error to:

size(C).m2

( (
l
2

)
k − 1

)p

(k − 1)n

The task now is to correlate the lower and upper bounds on the number of erroneous inputs
to C ′. For positive inputs, lemma (3) and (4), and for negative inputs, lemma (3) and (5)
show the following: (

n

k

)
≤ Error+C ′ ≤≤ size(C).m2

(
n− (l + 1)

k − (l + 1)

)
(

1−
(
l
2

)
k − 1

)
(k − 1)n ≤ Error-C ′ ≤ size(C).m2

( (
l
2

)
k − 1

)p

(k − 1)n

We set the values for the parameters in the sunflower lemma as l =
√
k and p =

√
k log n

and m = (p − 1)ll! for application of the lemma. Substituting these values in the above
expressions, we get the following bound on the size of the circuit C:

size(C) ≤ nΩ(
√
k)

Hence we have shown that any monotone circuit deciding the NP − complete problem
CLIQUE(k,n) where k is dependent on n cannot be of size polynomial in n.
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