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Lecture 54 : Layered Branching Programs

Lecturer: Jayalal Sarma M.N. Scribe: Prashant Vasudevan

Theme: Layered Branching Programs
Lecture Plan:Build up to Barrington’s Theorem

Previously we defined Branching Programs that are built on Directed Acyclic Graphs and
work by starting at a source vertex and testing the values of the variables that each vertex
is labeled with and following the appropriate edge till a sink is reached, and accepting or
rejecting based on the identity of the sink. Note that below we speak only of branching
programs of size polynomial in the number of variables.

Formally, the language computed by a branching program P is given by:
L(P ) = {x | P |x has a path from s to t ∈ T}, where T is the set of accepting sinks.

Now we consider a constrained version of Branching Programs:

Definition 1. Layered Branching Programs are branching programs where the nodes are
partitioned into a number of layers, and edges go only from nodes in one layer to nodes in
the next. The start node is in the first layer and the sink nodes in the last.

Definition 2. The length of a Branching Program is the length of the longest path from
the start node to any of the sinks. In case of layered programs, it is also the number of
layers, as the start node is in the first layer and the sinks are in the last.

Definition 3. The width of a Layered Branching Program is the maximum number of nodes
in any of its layers.

The width of a layered branching program corresponds in a rough sense to the amount of
memory the program carries - this is the information that one layer can receive from the
previous one and pass on to the next.

We had seen earlier that branching programs in general are NL-Complete. But what about
layered branching programs? These are no lesser as one can take any branching program,
perform a topological sort and get an equivalent layered branching program by adding a
few extra vertices to satisfy the requirement of edges to go only between adjacent layers -
all without affecting the length in any way and keeping the increase in number of nodes
polynomial.

Next we wonder about layered branching programs in which the width - the ’memory’ -
is constrained. Constrained to how much? We start at the very bottom, restricting our
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programs to constant width. At first glance this model seems quite weak and so did it seem
to most till Barrington came along and proved it to be quite otherwise.

We start with noting that the branching program for PARITY seen earlier is layered, with
length n and width 2. This shows a function in NC1\AC0 that can be computed by a
constant width branching program. Are there other such functions? Before going there, we
observe the following - a claim in somewhat the other direction:

Claim 4. All languages computed by constant width layered branching programs are in NC1.

Proof. To see this, notice that, once the input (values of variables) has been decided, com-
puting the program reduces to finding reachability in the DAG that results from retaining
the edges corresponding to the input, from the start vertex s to one (w.l.o.g) other sink
vertex t. Let (u, v) denote the boolean function corresponding to reachability from u to v
in this graph. Let M be the layer that is exactly half-way between the first (which has s)
and the last (which has t). We have:

(s, t) =
∨
v∈M

((s, v) ∧ (v, t))

For (s, v) and (v, t), we proceed recursively in the same manner until we get to functions
involving vertices in adjacent layers that we may evaluate directly. As length of the program
is at most polynomial in the number of variables n, the depth of this recursion is bounded
by O(log n), each level of recursion introducing two levels of gates into the circuit. Thus
the depth of the circuit is O(log n) and as the width of the program is constant, fan-in of
the gates is upper-bounded by a constant, making this an NC1 circuit computing the same
function as the branching program.

Notice that programs very similar to the one for PARITY , but of width k, may be used to
compute MODk for any constant k. Also, we can decide the union and intersection (OR
and AND) of the languages of any two constant width programs in another constant width
program by concatenating the programs appropriately. This suggests computing power
comparable to ACC0. How much more powerful could these programs be? This question
was settled by the following theorem from David Barrington’s Ph.D. thesis.

Theorem 5 (Barrington’s Theorem). All languages in NC1 can be computed by polynomial-
sized layered branching programs of constant width.

They can, in fact, be computed by a special class of branching programs, called permutation
programs, of width 5. Before getting to the proof itself, we list a few preliminaries.

Definition 6. A k-Permutation Branching Program is a layered branching program in
which:
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1. Each layer has k nodes.

2. Each layer observes only one variable.

3. For any setting of the variables, the edges going between any pair of consecutive layers
form a permutation of the vertices.

Definition 7. A program over a group G is given by:

P = ((x1, a1, b1), (x2, a2, b2), . . . , (xn, an, bn)), ai, bi ∈ G

On input x = (x1, x2, . . . , xn),

P (x) =
∏
i

αi, αi =

{
ai, if xi = 0

bi, if xi = 1

We shall be considering programs over the symmetric group Sk for some k. These programs
may be realised by k-permutation branching programs without the acceptance conditions.
We instead use the notion of σ-acceptance.

Definition 8. A Program P over Sk is said to σ-accept a language A if:

P (x) =

{
σ, if x ∈ A

I, if x /∈ A

Now for something about permutations. We shall be using two notations to represent
permutations:

1. Pointwise: σ = ((x1, y1), (x2, y2), . . . , (xn, yn)) implies that σ(xi) = yi.

2. Cyclic: σ = ((x11, x12, . . . , x1k1), (x21, x22, . . . , x2k2), . . . , (xn1, xn2, . . . , xnkn)) implies
that σ(xij) = xi[(j+1)(mod ki)]. In words, we list down the cycles in the permutation.

A cyclic permutation is one that has only one cycle.

Lemma 9 (Cycle Conjugacy Lemma). If σ, τ ∈ Sk are cyclic permutations, then they are
conjugate, i.e., ∃γ ∈ Sk : σ = γτγ−1.

To see this, suppose σ = ((s1, s2, . . . , sk)) and τ = ((t1, t2, . . . , tk)) in the cycle repre-
sentation. One can then verify that γ = ((t1, s1), (t2, s2), . . . , (tk, sk)) (in the pointwise
representation) fits the bill like a charm.
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