A Superpolynomial Lower Bound for Clique Function Circuits with at most $\frac{1}{6}\log\log n$ Negation Gates Kazuyuki Amano and Akira Maruoka

Sajin Koroth

Department of Computer Science IIT Madras

Advanced Complexity Theory Course - Spring 2012

・ロト ・同ト ・ヨト ・ヨ

Outline

- 2 Hawk's Eye View
- 8 Extending Montone Lower Bounds to Limited Negations
- Monotone Lower bound for Clique function using Bottleneck counting
- 5 Connecting the two worlds

6 Thank You

Main Results

Hawk's Eye View Extending Montone Lower Bounds to Limited Negations Monotone Lower bound for Clique function using Bottleneck Connecting the two worlds Thank You

Main Result : C with at most ¹/₆ log log n negations requires 2¹/₅(log m)^{(log m)¹/₂} gates for detecting cliques of size (log m)^{3(log m)¹/₂} in a graph with m vertices
 A better monotone lower bound for clique function : (using bottleneck counting) exp^{Ω(m¹/₃)} for appropriate parameters

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Main Results

Hawk's Eye View Extending Montone Lower Bounds to Limited Negations Monotone Lower bound for Clique function using Bottleneck Connecting the two worlds Thank You

Are we there yet ? (NP $\not\subset$ P/poly)

- Thanks to Fischer Limited Negation lower bounds for circuits with at most log n negations would do
- The monotone lowerbounds could be misleading : Perfect matching inspite of being in P has a superpolynomial lowerbound for monotone circuits

イロト イポト イヨト イヨト

- From the limited-negation non-monotone circuit for clique obtain an "appropriate" family of monotone functions
- Obtain lowerbounds for each function in the family (which approximates clique function)
- Use the lowerbounds on each function in the family to extend the lowerbound to any such family
- Transfer this lowerbound to the limited-negation circuit for clique.

- From the limited-negation non-monotone circuit for clique obtain an "appropriate" family of monotone functions
- Obtain lowerbounds for each function in the family (which approximates clique function)
- Use the lowerbounds on each function in the family to extend the lowerbound to any such family
- Transfer this lowerbound to the limited-negation circuit for clique.

- From the limited-negation non-monotone circuit for clique obtain an "appropriate" family of monotone functions
- Obtain lowerbounds for each function in the family (which approximates clique function)
- Use the lowerbounds on each function in the family to extend the lowerbound to any such family
- Transfer this lowerbound to the limited-negation circuit for clique.

- From the limited-negation non-monotone circuit for clique obtain an "appropriate" family of monotone functions
- Obtain lowerbounds for each function in the family (which approximates clique function)
- Use the lowerbounds on each function in the family to extend the lowerbound to any such family
- Transfer this lowerbound to the limited-negation circuit for clique.

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Outline

1 Main Results

2 Hawk's Eye View

Stending Montone Lower Bounds to Limited Negations

- 4 Monotone Lower bound for Clique function using Bottleneck counting
- 5 Connecting the two worlds
- 6 Thank You

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Idea

Use restrictions to eliminate negation gates by fixing their outputs

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Figure: Motone Circuit's from Non-monotone one's using restrictions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Figure: Motone Circuit's from Non-monotone one's using restrictions

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Figure: Motone Circuit's from Non-monotone one's using restrictions

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Figure: Motone Circuit's from Non-monotone one's using restrictions

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Figure: Motone Circuit's from Non-monotone one's using restrictions

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Figure: Motone Circuit's from Non-monotone one's using restrictions

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Figure: Motone Circuit's from Non-monotone one's using restrictions

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Some Notation

- Negation gates appearing in the minimal at most t-negations circuit C will be labelled g₁,...,g_t (labelled in a topological sorting order of DAG C.
- The output gate of the circuit will be labelled g_{t+1}
- The functions corresponding to restrictions will be labelled f_i , $1 \le i \le 2^t$.
- For example f_3 corresponds to the restriction 11, i.e. $g_1 = 1, g_2 = 1$
- f_{ε} would correspond to no restrictions to NOT gates, which corresponds to the function evaluated at gate which is the input to g_1

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Some Notation

- Negation gates appearing in the minimal at most *t*-negations circuit *C* will be labelled g₁,...,g_t (labelled in a topological sorting order of DAG *C*.
- The output gate of the circuit will be labelled g_{t+1}
- The functions corresponding to restrictions will be labelled f_i , $1 \le i \le 2^t$.
- For example f_3 corresponds to the restriction 11, i.e. $g_1 = 1, g_2 = 1$
- f_{ε} would correspond to no restrictions to NOT gates, which corresponds to the function evaluated at gate which is the input to g_1

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited of

Some Notation

- Negation gates appearing in the minimal at most *t*-negations circuit *C* will be labelled g₁,...,g_t (labelled in a topological sorting order of DAG *C*.
- The output gate of the circuit will be labelled g_{t+1}
- The functions corresponding to restrictions will be labelled f_i , $1 \le i \le 2^t$.
- For example f_3 corresponds to the restriction 11, i.e. $g_1 = 1, g_2 = 1$
- f_{ε} would correspond to no restrictions to NOT gates, which corresponds to the function evaluated at gate which is the input to g_1

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Some Notation

- Negation gates appearing in the minimal at most *t*-negations circuit *C* will be labelled g₁,...,g_t (labelled in a topological sorting order of DAG *C*.
- The output gate of the circuit will be labelled g_{t+1}
- The functions corresponding to restrictions will be labelled f_i , $1 \le i \le 2^t$.
- For example f_3 corresponds to the restriction 11, i.e. $g_1 = 1, g_2 = 1$
- f_{ε} would correspond to no restrictions to NOT gates, which corresponds to the function evaluated at gate which is the input to g_1

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Outline

1 Main Results

2 Hawk's Eye View

Stending Montone Lower Bounds to Limited Negations

- 4 Monotone Lower bound for Clique function using Bottleneck counting
- 5 Connecting the two worlds
- 6 Thank You

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Properties of these functions

- They are monotone
- There are $1 + \sum_{i=1}^{t} 2^{i} = 2^{t+1} 1$ of them
- Union of their sensitive graphs is a super graph of sensitive graph of *f* the original function

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Properties of these functions

- They are monotone
- There are $1 + \sum_{i=1}^{t} 2^{i} = 2^{t+1} 1$ of them
- Union of their sensitive graphs is a super graph of sensitive graph of *f* the original function

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

What the hell is a sensitive graph ?

Sensitivity graph for clique's of size 3 Input ordering : (1,2),(1,3),(2,3)

(日) (同) (三) (三)

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Sensitive graphs of restrictions cover sensitive graph of f

Theorem

 $\bigcup_{f_i} G_{f_i} \supseteq G_f$

• Take a
$$(w,w') \in G_f$$
, i.e. $f(w) = 0$ and $f(w') = 1$

• Look at $f_i(w)$ vs $f_i(w')$ starting from i = 1

- If $f_{\varepsilon}(w) = f_{\varepsilon}(w')$ then the sub-circuit of C rooted at input to g_1 evaluates to same on w, w'
- If ∀i < j, f_i(w) = f_i(w), then the sub-circuit of C rooted at input to g_i evaluates to the same on w, w[']
- If all f_i(w) = f_i(w') then we get that f_{t+1}(w) = f_{t+1}(w) then sub-circuit of C rooted at g_{t+1} evaluates to the same on w, w'. But....
- This is a contradiction, g_{t+1} is the root gate of C.

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Sensitive graphs of restrictions cover sensitive graph of f

Theorem

- Take a $(w, w') \in G_f$, i.e. f(w) = 0 and f(w') = 1
- Look at $f_i(w)$ vs $f_i(w')$ starting from i = 1
- If $f_{\varepsilon}(w) = f_{\varepsilon}(w')$ then the sub-circuit of C rooted at input to g_1 evaluates to same on w, w'
- If ∀i < j, f_i(w) = f_i(w), then the sub-circuit of C rooted at input to g_i evaluates to the same on w, w[']
- If all f_i(w) = f_i(w') then we get that f_{t+1}(w) = f_{t+1}(w) then sub-circuit of C rooted at g_{t+1} evaluates to the same on w, w'. But....
- This is a contradiction, g_{t+1} is the root gate of C.

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Sensitive graphs of restrictions cover sensitive graph of f

Theorem

- Take a $(w, w') \in G_f$, i.e. f(w) = 0 and f(w') = 1
- Look at $f_i(w)$ vs $f_i(w')$ starting from i = 1
- If $f_{\varepsilon}(w) = f_{\varepsilon}(w')$ then the sub-circuit of C rooted at input to g_1 evaluates to same on w, w'
- If ∀i < j, f_i(w) = f_i(w), then the sub-circuit of C rooted at input to g_i evaluates to the same on w, w[']
- If all f_i(w) = f_i(w') then we get that f_{t+1}(w) = f_{t+1}(w) then sub-circuit of C rooted at g_{t+1} evaluates to the same on w, w'. But....
- This is a contradiction, g_{t+1} is the root gate of C.

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Sensitive graphs of restrictions cover sensitive graph of f

Theorem

- Take a $(w, w') \in G_f$, i.e. f(w) = 0 and f(w') = 1
- Look at $f_i(w)$ vs $f_i(w')$ starting from i = 1
- If $f_{\varepsilon}(w) = f_{\varepsilon}(w')$ then the sub-circuit of C rooted at input to g_1 evaluates to same on w, w'
- If ∀i < j, f_i(w) = f_i(w), then the sub-circuit of C rooted at input to g_i evaluates to the same on w, w[']
- If all f_i(w) = f_i(w') then we get that f_{t+1}(w) = f_{t+1}(w) then sub-circuit of C rooted at g_{t+1} evaluates to the same on w, w'. But....
- This is a contradiction, g_{t+1} is the root gate of C.

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Sensitive graphs of restrictions cover sensitive graph of f

Theorem

- Take a $(w, w') \in G_f$, i.e. f(w) = 0 and f(w') = 1
- Look at $f_i(w)$ vs $f_i(w')$ starting from i = 1
- If $f_{\varepsilon}(w) = f_{\varepsilon}(w')$ then the sub-circuit of C rooted at input to g_1 evaluates to same on w, w'
- If ∀i < j, f_i(w) = f_i(w), then the sub-circuit of C rooted at input to g_i evaluates to the same on w, w[']
- If all $f_i(w) = f_i(w')$ then we get that $f_{t+1}(w) = f_{t+1}(w)$ then sub-circuit of C rooted at g_{t+1} evaluates to the same on w, w'. But....
- This is a contradiction, g_{t+1} is the root gate of C.

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited

Sensitive graphs of restrictions cover sensitive graph of f

Theorem

- Take a $(w, w') \in G_f$, i.e. f(w) = 0 and f(w') = 1
- Look at $f_i(w)$ vs $f_i(w')$ starting from i = 1
- If $f_{\varepsilon}(w) = f_{\varepsilon}(w')$ then the sub-circuit of C rooted at input to g_1 evaluates to same on w, w'
- If ∀i < j, f_i(w) = f_i(w), then the sub-circuit of C rooted at input to g_i evaluates to the same on w, w[']
- If all $f_i(w) = f_i(w')$ then we get that $f_{t+1}(w) = f_{t+1}(w)$ then sub-circuit of C rooted at g_{t+1} evaluates to the same on w, w'. But....
- This is a contradiction, g_{t+1} is the root gate of C.

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited of

Outline

1 Main Results

2 Hawk's Eye View

Stending Montone Lower Bounds to Limited Negations

- 4 Monotone Lower bound for Clique function using Bottleneck counting
- 5 Connecting the two worlds
- 6 Thank You

Obtaining Montone family from Limited Negations Circuit Characterizing the family for tight counting Trasferring the Lowerbound from family to negation limited of

Putting it all together

Corollary

For any positive integer t and $\alpha = 2^{t+1} - 1$ the following is true

$$size_t(f) \ge \min_{F' = \{f_1, \dots, f_{\alpha}\} \subseteq \mathscr{M}^n} \left\{ \max_{f \in F'} \left\{ size_0(f') \right\} \mid \bigcup_{f' \in F'} G(f') \supseteq G(f) \right\}$$

- They are monotone *Mⁿ* is all *n*-input monotone functions
- There are $1+\sum_{i=1}^t 2^i=2^{t+1}-1$ of them $\implies lpha=2^{t+1}-1$
- Union of their sensitive graphs is a super graph of sensitive graph of $f \implies \bigcup_{f' \in F'} G(f') \supseteq G(f)$

イロト イポト イヨト イヨト

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of a

Outline

1 Main Results

- 2 Hawk's Eye View
- 3 Extending Montone Lower Bounds to Limited Negations
- Monotone Lower bound for Clique function using Bottleneck counting
- 5 Connecting the two worlds

6 Thank You

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of e

- A better lowerbound for a special setting of parameters : $\exp\left(\Omega\left(m^{\frac{1}{3}}\right)\right)$ vs $\exp\left(\Omega\left(\frac{m}{\log m}\right)^{\frac{1}{3}}\right)$
- Uses only elementary combinatorics Sun Flower Lemma not required

Outline of the proof

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of e

- Define appropriate approximations to AND and OR gates
- Prove that the approximated circuit makes a lot of errors
- Prove that approximated individual gates make only a small number of errors
- Hence there must be a large number of gates in the original circuit

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of e

Outline of the proof

- Define appropriate approximations to AND and OR gates
- Prove that the approximated circuit makes a lot of errors
- Prove that approximated individual gates make only a small number of errors
- Hence there must be a large number of gates in the original circuit

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of e

Outline of the proof

- Define appropriate approximations to AND and OR gates
- Prove that the approximated circuit makes a lot of errors
- Prove that approximated individual gates make only a small number of errors
- Hence there must be a large number of gates in the original circuit

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors

Outline

1 Main Results

- 2 Hawk's Eye View
- 3 Extending Montone Lower Bounds to Limited Negations
- Monotone Lower bound for Clique function using Bottleneck counting
- 5 Connecting the two worlds

6 Thank You

Some Notation

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors

ndividual Approximated gates make only a small number of e

Definition

End-Point SetLet t be a term or a clause. The end-point set of t is a set of all end-points of the edges in t. The size(t) is the cardinality of end-point set of t

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of e

- $\bullet\,$ Circuit is layered and alternates between \wedge,\vee gate layers
- Output gate is an \land gate
- Let an OR gate be fed by two approximators represented by monotone DNF formulae's f_1^D, f_2^D .
- Approximate OR : Convert the DNF formula f₁^D ∨ f₂^D to a CNF formula and take away all clauses whose size exceed r.
- Let an AND gate be fed by two approximators represented by monotone CNF formulae's f_1^C, f_2^C .
- Approximate AND : Convert the CNF formula f₁^C ∧ f₂^C to a DNF formula and take away all terms whose size exceed *I*.

・ロト ・ 一日 ・ ・ ヨ ・ ・ ・ ・ ・

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of e

- Circuit is layered and alternates between \wedge,\vee gate layers
- Output gate is an \land gate
- Let an OR gate be fed by two approximators represented by monotone DNF formulae's f_1^D, f_2^D .
- Approximate OR : Convert the DNF formula $f_1^D \lor f_2^D$ to a CNF formula and take away all clauses whose size exceed r.
- Let an AND gate be fed by two approximators represented by monotone CNF formulae's f₁^C, f₂^C.
- Approximate AND : Convert the CNF formula $f_1^C \wedge f_2^C$ to a DNF formula and take away all terms whose size exceed *I*.

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of e

- Circuit is layered and alternates between \wedge,\vee gate layers
- Output gate is an \land gate
- Let an OR gate be fed by two approximators represented by monotone DNF formulae's f_1^D, f_2^D .
- Approximate OR : Convert the DNF formula $f_1^D \lor f_2^D$ to a CNF formula and take away all clauses whose size exceed r.
- Let an AND gate be fed by two approximators represented by monotone CNF formulae's f_1^C, f_2^C .
- Approximate AND : Convert the CNF formula f₁^C ∧ f₂^C to a DNF formula and take away all terms whose size exceed *I*.

(日) (同) (目) (日) (日)

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of 6

Why these approximations ?

- Taking away terms from a DNF formula makes it accept possibly less number of inputs
- Taking away clauses from a CNF formula makes it accept possibly more number of inputs
- If there is a bad graph on which \bar{C} outputs 1 then there exists $\bar{\nabla}$ which outputs 1.
- $(f_1 \overline{\lor} f_2) \ge (f_1 \lor f_2)$ and $(f_1 \overline{\land} f_2) \le (f_1 \land f_2)$

・ロト ・ 一日 ・ ・ ヨ ・ ・ ・ ・ ・

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of (

Why these approximations ?

- Taking away terms from a DNF formula makes it accept possibly less number of inputs
- Taking away clauses from a CNF formula makes it accept possibly more number of inputs
- If there is a good graph on which *C* outputs 0 then there exists *∧* which outputs 0.
- If there is a bad graph on which \bar{C} outputs 1 then there exists $\bar{\nabla}$ which outputs 1.
- $(f_1 \overline{\lor} f_2) \ge (f_1 \lor f_2)$ and $(f_1 \overline{\land} f_2) \le (f_1 \land f_2)$

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of 6

Why these approximations ?

- Taking away terms from a DNF formula makes it accept possibly less number of inputs
- Taking away clauses from a CNF formula makes it accept possibly more number of inputs
- If there is a good graph on which \bar{C} outputs 0 then there exists $\bar{\wedge}$ which outputs 0.
- If there is a bad graph on which \bar{C} outputs 1 then there exists $\bar{\nabla}$ which outputs 1.
- $(f_1 \overline{\lor} f_2) \ge (f_1 \lor f_2)$ and $(f_1 \overline{\land} f_2) \le (f_1 \land f_2)$

イロト イポト イヨト イヨト

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of

Outline

Main Results

- 2 Hawk's Eye View
- 3 Extending Montone Lower Bounds to Limited Negations
- Monotone Lower bound for Clique function using Bottleneck counting
- 5 Connecting the two worlds

6 Thank You

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of

Good and Bad Graphs

- Good graph : Clique on s vertices
- Bad graph : A complete s-1 partite graph

(日) (同) (三) (三)

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of

Proof

An approximator either identically outputs 0 or outputs 1 on at least half the fraction of bad graphs

- Output of C is an ∧, hence is approximators ouput is represented by a DNF of whose terms are of size at most I
- If it is identically 0 then we are done, otherwise there exists a term t whose size is at most l and f
 ≥ t holds.
- Reperesent bad graphs using a bijection from $\{v_1, \ldots, v_m\}$ to $\{(1,1), \ldots, (1, \frac{m}{s-1}), \ldots, (s-1, 1), \ldots, (s-1, \frac{m}{s-1})\}$
- Term t outputs 0 iff there is a variable (u, v) such that u and v under the bijection are assigned to tuples whose first component differs

• The number of bad graphs where this happens is at most

$$\binom{l}{2} \left(\frac{\left(\frac{m}{s-1}\right)}{m} \right)$$

・ロト ・四ト ・ヨト ・ヨト

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of

Proof

An approximator either identically outputs 0 or outputs 1 on at least half the fraction of bad graphs

- Output of C is an ∧, hence is approximators ouput is represented by a DNF of whose terms are of size at most I
- If it is identically 0 then we are done, otherwise there exists a term t whose size is at most I and $\overline{f} \ge t$ holds.
- Reperesent bad graphs using a bijection from $\{v_1, \ldots, v_m\}$ to $\{(1,1), \ldots, (1, \frac{m}{s-1}), \ldots, (s-1, 1), \ldots, (s-1, \frac{m}{s-1})\}$
- Term t outputs 0 iff there is a variable (u, v) such that u and v under the bijection are assigned to tuples whose first component differs

• The number of bad graphs where this happens is at most

$$\binom{l}{2} \left(\frac{\left(\frac{m}{s-1}\right)}{m} \right)$$

<ロ> (四) (四) (三) (三) (三) (三)

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of (

Proof

An approximator either identically outputs 0 or outputs 1 on at least half the fraction of bad graphs

- Output of C is an ∧, hence is approximators ouput is represented by a DNF of whose terms are of size at most I
- If it is identically 0 then we are done, otherwise there exists a term t whose size is at most I and $\overline{f} \ge t$ holds.
- Reperesent bad graphs using a bijection from $\{v_1, \ldots, v_m\}$ to $\{(1,1), \ldots, (1, \frac{m}{s-1}), \ldots, (s-1,1), \ldots, (s-1, \frac{m}{s-1})\}$
- Term t outputs 0 iff there is a variable (u, v) such that u and v under the bijection are assigned to tuples whose first component differs

• The number of bad graphs where this happens is at most

$$\binom{l}{2}\left(\frac{\left(\frac{m}{s-1}\right)}{m}\right)$$

(ロ) (部) (E) (E) (E)

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of

Proof

An approximator either identically outputs 0 or outputs 1 on at least half the fraction of bad graphs

- Output of C is an ∧, hence is approximators ouput is represented by a DNF of whose terms are of size at most I
- If it is identically 0 then we are done, otherwise there exists a term t whose size is at most I and $\overline{f} \ge t$ holds.
- Reperesent bad graphs using a bijection from $\{v_1, \ldots, v_m\}$ to $\{(1,1), \ldots, (1, \frac{m}{s-1}), \ldots, (s-1,1), \ldots, (s-1, \frac{m}{s-1})\}$
- Term t outputs 0 iff there is a variable (u, v) such that u and v under the bijection are assigned to tuples whose first component differs

• The number of bad graphs where this happens is at most

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of

Proof

An approximator either identically outputs 0 or outputs 1 on at least half the fraction of bad graphs

- Output of C is an ∧, hence is approximators ouput is represented by a DNF of whose terms are of size at most I
- If it is identically 0 then we are done, otherwise there exists a term t whose size is at most I and $\overline{f} \ge t$ holds.
- Reperesent bad graphs using a bijection from $\{v_1, \ldots, v_m\}$ to $\{(1,1), \ldots, (1, \frac{m}{s-1}), \ldots, (s-1, 1), \ldots, (s-1, \frac{m}{s-1})\}$
- Term t outputs 0 iff there is a variable (u, v) such that u and v under the bijection are assigned to tuples whose first component differs
- The number of bad graphs where this happens is at most $\binom{l}{2} \left(\frac{\binom{m}{s-1}}{m}\right)$.

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of

Proof

An approximator either identically outputs 0 or outputs 1 on at least half the fraction of bad graphs

- Output of C is an ∧, hence is approximators ouput is represented by a DNF of whose terms are of size at most I
- If it is identically 0 then we are done, otherwise there exists a term t whose size is at most I and $\overline{f} \ge t$ holds.
- Reperesent bad graphs using a bijection from $\{v_1, \ldots, v_m\}$ to $\{(1,1), \ldots, (1, \frac{m}{s-1}), \ldots, (s-1, 1), \ldots, (s-1, \frac{m}{s-1})\}$
- Term t outputs 0 iff there is a variable (u, v) such that u and v under the bijection are assigned to tuples whose first component differs
- The number of bad graphs where this happens is at most $\binom{l}{2}\left(\frac{\binom{m}{s-1}}{m}\right)$.

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of e

Outline

Main Results

- 2 Hawk's Eye View
- 3 Extending Montone Lower Bounds to Limited Negations
- Monotone Lower bound for Clique function using Bottleneck counting
- 5 Connecting the two worlds

6 Thank You

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of e

- Proof is very similar to the above
- For approximated OR gates the bijection above suffices for counting
- For approximated AND gates which will make an error on good graphs we need a bijection from good graphs
- Bijections for good graphs from {v₁,..., v_m} to {1,...,s,s+1,...,m} such that vertices which are mapped to the first s co-ordinates form a clique

Key Advantages - Bottleneck counting in the framework of a Defining Appropriate Approximations Approximated Circuit Makes a lot of errors Individual Approximated gates make only a small number of e

Extending to Approximate Clique functions

Let $s_1 \leq s_2$ with $s_1^{\frac{1}{3}}s_2 \leq \frac{m}{200}$, and suppose *C* is a monotone circuit and that the fraction of good graphs in $l(m, s_2)$ such that *C* outputs 1 at least $h = h(s_2)$. Then at least one of the following is true

- The number of gates in C is at least $(h/2)2^{s_1^{\frac{1}{3}}/4}$
- The fraction of bad graphs in O(m, s₁) such that C outputs 0 is at most 2/s₁^{1/3}

Layering Notation

- Let $l_0 < l_1 < \cdots < l_{\alpha}$ be some monotone increasing sequence with $l_0 = s$ and $l_{\alpha} = m$
- A graph v is called good in the *i*-th layer if v consists of a clique of size l_{i-1} and no other edges
- A graph *u* is called bad in the *i*-th layer if there exists a partition of some *l_i* vertices into *s* 1 sets with equal size such that any two vertices choosen between different sets have and edge between them and no other edges exist.
- Any edge ending in a good graph of first layer will be in G_f .
- A edge starting in a bad graph of any layer will be in G_f .

Layering Notation

- Let $l_0 < l_1 < \cdots < l_{\alpha}$ be some monotone increasing sequence with $l_0 = s$ and $l_{\alpha} = m$
- A graph v is called good in the *i*-th layer if v consists of a clique of size I_{i-1} and no other edges
- A graph *u* is called bad in the *i*-th layer if there exists a partition of some *l_i* vertices into *s* 1 sets with equal size such that any two vertices choosen between different sets have and edge between them and no other edges exist.
- Any edge ending in a good graph of first layer will be in G_f .
- A edge starting in a bad graph of any layer will be in G_f .

Layering Notation

- Let $l_0 < l_1 < \cdots < l_{\alpha}$ be some monotone increasing sequence with $l_0 = s$ and $l_{\alpha} = m$
- A graph v is called good in the *i*-th layer if v consists of a clique of size I_{i-1} and no other edges
- A graph *u* is called bad in the *i*-th layer if there exists a partition of some *l_i* vertices into *s* 1 sets with equal size such that any two vertices choosen between different sets have and edge between them and no other edges exist.
- Any edge ending in a good graph of first layer will be in G_f .
- A edge starting in a bad graph of any layer will be in G_f .

(日) (周) (日) (日) (日)

Layering Notation

- Let $l_0 < l_1 < \cdots < l_{\alpha}$ be some monotone increasing sequence with $l_0 = s$ and $l_{\alpha} = m$
- A graph v is called good in the *i*-th layer if v consists of a clique of size I_{i-1} and no other edges
- A graph u is called bad in the *i*-th layer if there exists a partition of some l_i vertices into s 1 sets with equal size such that any two vertices choosen between different sets have and edge between them and no other edges exist.
- Any edge ending in a good graph of first layer will be in G_f .
- A edge starting in a bad graph of any layer will be in G_f .

Layering Notation

- Let $l_0 < l_1 < \cdots < l_{\alpha}$ be some monotone increasing sequence with $l_0 = s$ and $l_{\alpha} = m$
- A graph v is called good in the *i*-th layer if v consists of a clique of size I_{i-1} and no other edges
- A graph *u* is called bad in the *i*-th layer if there exists a partition of some *l_i* vertices into *s* 1 sets with equal size such that any two vertices choosen between different sets have and edge between them and no other edges exist.
- Any edge ending in a good graph of first layer will be in G_f .
- A edge starting in a bad graph of **any** layer will be in G_f .

- Without loss of genarality f_1 covers $\frac{1}{\alpha}$ fraction of edges of G_f
- Thanks to the extension of monotone clique function hardness to monotone clique approximators on a "large" number of bad graphs f₁ outputs 1, whereas f would have output 0
- Hence for a large number of good graphs obtained by adding edges to the wrongly classified bad graphs f_1 outputs 1 (as f_1 is monotone)
- For these graphs $f_1(u) = 1$, $f_1(u^+) = 1$ but f(u) = 0, $f(u^+) = 1$ hence $(u, u^+) \in G_f$ but $(u, u^+) \notin G_{f_1}$
- $\frac{1}{\alpha}$ fraction of these edges must be covered without loss of generality by f_2 . Hence $f_2(u) = 0$ and $f_2(u^+) = 1$.
- Let v be a good graph in the second layer such that $u^+ \leq v$. Hence $f_2(v) = 1$ (montonicity).

- Without loss of genarality f_1 covers $\frac{1}{\alpha}$ fraction of edges of G_f
- Thanks to the extension of monotone clique function hardness to monotone clique approximators on a "large" number of bad graphs f_1 outputs 1, whereas f would have output 0
- Hence for a large number of good graphs obtained by adding edges to the wrongly classified bad graphs f_1 outputs 1 (as f_1 is monotone)
- For these graphs $f_1(u) = 1$, $f_1(u^+) = 1$ but f(u) = 0, $f(u^+) = 1$ hence $(u, u^+) \in G_f$ but $(u, u^+) \notin G_{f_1}$
- $\frac{1}{\alpha}$ fraction of these edges must be covered without loss of generality by f_2 . Hence $f_2(u) = 0$ and $f_2(u^+) = 1$.
- Let v be a good graph in the second layer such that $u^+ \le v$. Hence $f_2(v) = 1$ (montonicity).

- Without loss of genarality f_1 covers $\frac{1}{\alpha}$ fraction of edges of G_f
- Thanks to the extension of monotone clique function hardness to monotone clique approximators on a "large" number of bad graphs *f*₁ outputs 1, whereas *f* would have output 0
- Hence for a large number of good graphs obtained by adding edges to the wrongly classified bad graphs f_1 outputs 1 (as f_1 is monotone)
- For these graphs $f_1(u) = 1$, $f_1(u^+) = 1$ but f(u) = 0, $f(u^+) = 1$ hence $(u, u^+) \in G_f$ but $(u, u^+) \notin G_{f_1}$
- $\frac{1}{\alpha}$ fraction of these edges must be covered without loss of generality by f_2 . Hence $f_2(u) = 0$ and $f_2(u^+) = 1$.
- Let v be a good graph in the second layer such that $u^+ \le v$. Hence $f_2(v) = 1$ (montonicity).

《曰》 《問》 《曰》 《曰》 曰

- Without loss of genarality f_1 covers $\frac{1}{\alpha}$ fraction of edges of G_f
- Thanks to the extension of monotone clique function hardness to monotone clique approximators on a "large" number of bad graphs *f*₁ outputs 1, whereas *f* would have output 0
- Hence for a large number of good graphs obtained by adding edges to the wrongly classified bad graphs f_1 outputs 1 (as f_1 is monotone)
- For these graphs $f_1(u) = 1$, $f_1(u^+) = 1$ but f(u) = 0, $f(u^+) = 1$ hence $(u, u^+) \in G_f$ but $(u, u^+) \notin G_{f_1}$
- $\frac{1}{\alpha}$ fraction of these edges must be covered without loss of generality by f_2 . Hence $f_2(u) = 0$ and $f_2(u^+) = 1$.
- Let v be a good graph in the second layer such that $u^+ \le v$. Hence $f_2(v) = 1$ (montonicity).

- Without loss of genarality f_1 covers $\frac{1}{\alpha}$ fraction of edges of G_f
- Thanks to the extension of monotone clique function hardness to monotone clique approximators on a "large" number of bad graphs *f*₁ outputs 1, whereas *f* would have output 0
- Hence for a large number of good graphs obtained by adding edges to the wrongly classified bad graphs f_1 outputs 1 (as f_1 is monotone)
- For these graphs $f_1(u) = 1$, $f_1(u^+) = 1$ but f(u) = 0, $f(u^+) = 1$ hence $(u, u^+) \in G_f$ but $(u, u^+) \notin G_{f_1}$
- $\frac{1}{\alpha}$ fraction of these edges must be covered without loss of generality by f_2 . Hence $f_2(u) = 0$ and $f_2(u^+) = 1$.
- Let v be a good graph in the second layer such that $u^+ \le v$. Hence $f_2(v) = 1$ (montonicity).

《曰》 《問》 《曰》 《曰》 曰

- Apply the approximator lowerbound again, as we have showed that f_2 outputs correctly for a large fraction of good graphs in layer 2. Hence we get that there are bad graphs in layer 2 where f_2 errs.
- If f_2 errs on a bad graph in layer 2 then so must f_1 .
- Continuing the argument shows that every function f_1, \ldots, f_{α} errs on at least one bad graph.

イロト イポト イヨト イヨト

- Apply the approximator lowerbound again, as we have showed that f_2 outputs correctly for a large fraction of good graphs in layer 2. Hence we get that there are bad graphs in layer 2 where f_2 errs.
- If f_2 errs on a bad graph in layer 2 then so must f_1 .
- Continuing the argument shows that every function f_1, \ldots, f_{α} errs on at least one bad graph.

- Apply the approximator lowerbound again, as we have showed that f_2 outputs correctly for a large fraction of good graphs in layer 2. Hence we get that there are bad graphs in layer 2 where f_2 errs.
- If f_2 errs on a bad graph in layer 2 then so must f_1 .
- Continuing the argument shows that every function f_1, \ldots, f_{α} errs on at least one bad graph.

Questions ?

Sajin Koroth A Superpolynomial Lower Bound for Clique Function Circu

(日) (四) (王) (王)