
Making Hard Problem Harder

Nilkamal Adak
CS11M037

IITM

April 19, 2012

Nilkamal Adak CS11M037 Making Hard Problem Harder



Notion of Hard Functions

I What do you mean by hard functions ?

I Worst case s − hard functions.

I Average case s − hard functions.

I Why are we interested to make hard functions harder ?

Nilkamal Adak CS11M037 Making Hard Problem Harder



Hardness Condenser & Hardness Extractor

I Hardness Condenser

I Hardness Extractor

I What if we have an ’efficient’ hardness condenser ?

Nilkamal Adak CS11M037 Making Hard Problem Harder



Some Notations

I f : m→ n to denote f : {0, 1}m → {0, 1}n

I To identify a boolean function f on n bits, we use 2n bit
strings .ie the truth table of the functions.

I hard functions for size s : A function f is said to be a hard
function for size s if no circuit of size s can compute it
correctly.

I δ−hard functions for size s : A function f is said to be a
δ−hard function for size s if no circuit of size s that compute
a function that agree with f on more than 1− δ fractions of
the inputs.

Nilkamal Adak CS11M037 Making Hard Problem Harder



Hardness Condenser and Extractor

Hardness Condenser
Let A and B be complexity models(eg. deterministic circuits,
nondeterministic circuits, circuits with oracle D, formulas,
branching programs etc.) An(n, s, n′, s ′) hardness condenser with
advice length l from worst-case (resp. δ − average − case)
hardness for A to worst-case (resp. δ′ − average − case) hardness
for B is a function

Cn : 2n × l → 2n
′

(1)

with n′ < n such that if f : n→ 1 requires (resp. is δ − hard for)
size s in A, then there is a string y ∈ {0, 1}l for which Cn(f , y)
requires (resp. is δ − hard for ) size s ′ in B.

Nilkamal Adak CS11M037 Making Hard Problem Harder



Hardness Condenser
An(n, s, n′, s ′) hardness condenser with advice length l is a function

Cn : 2n × l → 2n
′

with n′ < n such that if f : n→ 1 requires size s, then there is a
string y ∈ {0, 1}l for which Cn(f , y) requires size s ′ .

We would like (n, s, n′, s ′) hardness condensers with advise length
l .

I l is as small as possible.

I s ′ is as close to s as possible.

I n′ is as close to log(s ′) as possible.

Nilkamal Adak CS11M037 Making Hard Problem Harder



Hardness Extractor

Hardness Extractor
An (n, s) hardness extractor is an (n, s, n′, s ′) hardness condenser
with advice length O(log(n)) for which n′ = Ω(log(s) and
s ′ ≥ 2n

′
/n′

Hardness Extractor is hardness condenser with close to ideal
parameters.

Nilkamal Adak CS11M037 Making Hard Problem Harder



Ideal Case

Suppose we have a explicit hardness condenser without any advise,
then we can use it to give a explicit function that is as hard as
possible in the following manner.
We start with a hard function f1 and apply our hardness condenser
to get an explicit function f2 that is more harder and repeatedly
apply this procedure to get greater levels of hardness.
Recall that we know there are boolean functions that has circuit
lower bound 2n/n but we don’t know any explicit functions of that
family. So if we have an efficient hardness condenser , we can
explicitly give functions of this nature.

Nilkamal Adak CS11M037 Making Hard Problem Harder



Negative Result

We cannot achieve the ideal case. That is we cannot eliminate the
advise the strings for general hardness condensers.

Theorem
Any (n, s, n′, s ′) relativizing hardness condenser requires l bits of
advice where

2l >
2n + Ω(s ′)− s

2n′+1

Nilkamal Adak CS11M037 Making Hard Problem Harder



Positive Result

We give two special class of functions for which there are efficient
hardness condensers without advise.

1. Biased functions : The output is biased to 0 (or 1)

2. Average Case Hard Functions : A function f is said to be a
γ−hard function for size s if no circuit of size s that compute
a function that agree with f on more than 1− γ fractions of
the inputs.

Nilkamal Adak CS11M037 Making Hard Problem Harder



Biased Functions

Theorem
For some constant c, there is an explicit
(n, s, n − bclog 1

H(αF )
c,Ω((s − n)/n)) hardness condenser from

worst-case hardness to worst-case hardness that requires no advice.

Nilkamal Adak CS11M037 Making Hard Problem Harder



Proof strategy

I Interesting application of Pairwise independent hash family

I construction of f ′ from f using hash function from Pairwise
independent hash family

I Argue about efficient computation of the condenser

I Argue about bound on s ′

I Argue that n′ is small.

Nilkamal Adak CS11M037 Making Hard Problem Harder



Average case hard Functions

Definition : Covering Codes

A (K ,N,R) covering code is a function A : K → N such that for
each y ∈ {0, 1}N , there is some string x ∈ {0, 1}K such that the
Hamming distance between y and A(x) is at most R.

Definition : t-local efficient recoverable covering

A (K ,N,R) covering code A is t − local if for each x ∈ {0, 1}K
there is a circuit of size poly(t, log(N)) with oracle access to x
which , given as input an index i between 1 and N, outputs the ith
bit of A(x). .

A is efficiently recoverable if there is a polynomial time procedure
recA which given a string y ∈ {0, 1}N as input, outputs a string
x ∈ {0, 1}K such that the Hamming distance between A(x) and y
is at most R

Nilkamal Adak CS11M037 Making Hard Problem Harder



continued...

Theorem
If there is a t − local efficiently recoverable (2k , 2n,R) covering
code, then there is a constant c such that there is an explicit
(n, s, k, s/(t + n)c) hardness condenser from R/2n average-case
hardness for deterministic circuits to worst-case hardness for
deterministic circuits to worst-case hardness for deterministic
circuits.

Nilkamal Adak CS11M037 Making Hard Problem Harder



Proof strategy

I Interesting application of Coding Theory

I construction of f ′ from f via t−local efficiently decodable
code

I Argue about efficient computation of the condenser

I Argue about bound on s ′

Nilkamal Adak CS11M037 Making Hard Problem Harder



Thank You!

Nilkamal Adak CS11M037 Making Hard Problem Harder


