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Communication Complexity

Yao’s model:
I Two players, Alice and Bob, given inputs a ∈ A and b ∈ B,

respectively. (Typically, A = B = {0, 1}n .)

I They wish to compute function f : (A,B)→ Z by
communicating with each other while minimising number of
bits of communication. (Z = {0, 1} for decision problems.)

I No bounds on computational power of players.
I For each function, the players establish a protocol beforehand.
I Communication complexity of f is defined as the number of

bits communicated in the protocol involving the least
communication.
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Communication Protocol

A protocol dictates the sequence of sending messages on any input
and when to stop. The message sent by a player at any instant is a
function of the input to the player and all the communication that
has already happened.

A useful representation is as the communication tree which is a
binary tree where each inner node represents a decision made by
some player and each edge represents a bit of communication.
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Communication Matrix

The communication matrix is a |A| × |B| matrix M where
Mab = f (a, b).

A set of positions R in a matrix is said to be a rectangle if
whenever (x1, y1) ∈ R and (x2, y2) ∈ R, then (x1, y2) ∈ R and
(x2, y1) ∈ R.

A monochromatic rectangle is one where the value of f at all
positions in it is the same.
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Lower Bounds

It is important to note that the set of pairs (a, b) which lead the
players to any particular node in the communication tree form a
rectangle.

This gives us lower bounds on the number of leaves in the
communication tree, which are at least as many in number as the
number of disjoint monochromatic rectangles needed to tile the
communication matrix.

Which in turn gives a lower bound on the depth of the
communication tree and hence on the communication complexity
of the function itself.
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The Karchmer-Wigderson Game

A and B are disjoint subsets of {0, 1}n , and the objective is to find
an index at which the strings a and b differ, i.e., to compute
f (a, b) = i : ai 6= bi .

The minimum depth of any communication tree is again the
communication complexity C (A,B) of the pair A,B.

The communication complexity of a boolean function f is C (A,B)
with A = f−1(0) and B = f−1(1).
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Circuit Depth

Let D(f ) be the minimum depth of a formula with 2-input AND,
OR and NOT gates computing f . We have the following intriguing
connection between circuit depth and communication complexity.

Theorem (Karchmer-Wigderson, 1988)
For every boolean function f , D(f ) = C (f ).
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Monotone functions
A monotone boolean function is one in which switching any
variable from false to true can never change the value of the
function from true to false. These are precisely those functions
that can be computed using only AND and OR gates.

We define a monotone version of the Karchmer-Wigderson game in
which the players are requied to find an i such that ai = 0 and
bi = 1. Such an i may not always exist, but if A = f−1(0) and
B = f−1(1) and f is a monotone boolean function, then it surely
does.

Note that the depth of circuits with only AND and OR gates and
communication complexity as per the monotone KW game for
monotone boolean functions also satisfy the theorem stated earlier.
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STCON
The st-connectivity problem STCONm is, given a directed graph
on m + 2 vertices (with special vertices s and t), to determine
whether it has a path from s to t.

The graph is specified in the input by the characteristic string of
its edges, e, such that e(ij) = 1 iff there is an edge from i to j.

Notice that STCON is a monotone function, as adding more
edges cannot remove connectivity.

We give Alice a graph G such that STCON (G) = 1 and Bob a
graph H (on the same vertex set) such that STCON (H ) = 0.
(We exchange f−1(0) and f−1(1) between the players, but this
hardly matters.)
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STCON

The monotone KW game now translates into finding an edge in G
that is not present in H .

As we shall be looking into lower bounds, we may concern
ourselves with special cases as we please. Here, let G be a simple
path from s to t. Colour H with a coluring c such that c(v) = 0 if
v is reachable from s and 0 otherwise. The game is now to find an
edge (u, v) in G such that c(u) = 0 and c(v) = 1. We shall
henceforth refer to this restricted game instead as STCONm .

By binary searching on edges in the path in G, we can obtain
C (STCONm) = O((log m)2).
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FORK

We define one last game. Let [n] denote the set {1, 2, . . . ,n}.

In the fork game on a subset S ⊆ [n]l , Alice and Bob are given
strings a, b ∈ S respectively.

The objective is to find a position i (1-indexed) such that ai 6= bi
and, if i > 1, ai−1 = bi−1. Further, if al = bl , l is also a valid
answer.

Denote by C (FORKn,l) the communication complexity of the
game when played with S = [n]l .
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Reducion to STCON

The reduction comes about by considering the string in [n]l as a
path in a graph on an n × l grid, where in each row i the path
contains the vertex corresponding to ai .

Add start and end vertices s and t, and connect these to the
terminal vertices in the above path.

Computing FORKn,l on strings a and b now reduces to solving
STCONnl on the two graphs, one corresponding to the path for a,
and the other in which s and vertices in the path for b are coloured
0 and the rest 1.

This gives us C (FORKn,l) ≤ C (STCONnl) = O((log nl)2).
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The Lower Bound

We shall now embark upon a most perilous journey in order to
show that the above bound is almost optimal for C (FORKn,n).

Call any protocol that for some subset S ⊆ [n]l with |S | ≥ αnl

plays the fork game an (α, l)-protocol. Let C (α, l) be the
minimum communication complexity of any (α, l)-protocol.

C (FORKn,n) = C (1,n).
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Some Claims

Claim
For l ≥ 1 and α ≥ 1/n, C (α, l) > 0.

Claim
For l ≥ 1 and any α, if C (α, l) > 0, then C (α, l) ≥ C (α/2, l) + 1.

Starting at C (1,n) and applying the second result above log n
times, we get C (1,n) ≥ C (1/n,n) + log n ≥ log n. This gives
C (FORKn,n) = Ω(log n), but we need a better lower bound.

Notice that here we have left the n in C (1,n) unchanged. We
shall now harvest this.
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Amplification

Lemma (Amplification Lemma)
For every l ≥ 2 and α ≥ 1/

√
n, C (α, l) ≥ C (

√
α

2 , l
2).

In order to prove this, we shall need the following lemma.

Lemma
In a bipartite graph G(U ,V ,E) with |U | = |V | and |E | ≥ α|V |2,
at least one of the following holds:
a) Some u ∈ U is adjacent to at least

√
α
2 |V | edges.

b) There is an U ′ ⊆ U such that |U ′| ≥
√

α
2 |U | and each u ∈ U ′

is adjacent to at least α
2 |V | edges.
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Proving the Amplification Lemma

Assume the existence of an (α, l)-protocol Π for a set S .

Construct a bipartite graph with the vertex set on each side being
the set of strings [n]l/2. Edges are present between vertices u on
the left and v on the right if the string uv is in the set S .

If, on this graph, condition (a) of the above lemma should hold,
then there is some u ∈ [n]l/2 that has

√
α
2 |V | neighbours. We may

now obtain a (
√

α
2 ,

l
2)-protocol for this set of neighbours from Π

by placing u in front of any string in this set and running Π.
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Proving the Amplification Lemma

If condition (b) holds, consider the n × l/2 block out of which
strings in [n]l/2 on the right partition in the graph are formed by
picking one symbol from each layer. At each layer, pick n/2
symbols at random and form thus two n/2× l/2 blocks called X
and Y .

For any u ∈ U ′, with probability at least 1− 2e−αn/4 there is an
extension vX (u) of u that is entirely in X and another, vY (u),
entirely in Y .
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Proving the Amplification Lemma

We can then use Markov’s inequality to show that if we keep
α ≥ n−1/2 (α >> 1/n), then there exists some choice of X and Y
such that at least 1/

√
2 of all strings in U ′, that is, at least

√
α/2

of all strings in [n]l/2 on the left have extensions in both X and Y .

This set that has these extensions is our new set S ′ on which we
have a (

√
α

2 , l
2)-protocol - given ua, ub ∈ S ′, run Π on uavX (ua)

and ubvY (ub). As these strings have no common symbols in the
right half, the answer that Π gives is that for ua and ub.

This proves the lemma.
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Using the Amplification

Again start with C (1,n) and apply the result like we did far above
to obtain:

C (1,n) ≥ C ( 2√
n ,n) ≥ C (16

n ,n) + Ω(log n)

≥ C ( 2√
n ,

n
2 ) + Ω(log n)

We may apply this Θ(log n) times to finally get:
C (1,n) ≥ C ( 2√

n , 1) + Ω((log n)2) = Ω((log n)2)

This gives us C (FORKn,n) = Ω((log n)2).
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Finally

Going back, we see that since C (STCONm) ≥ C (FORK√m,
√

m),
C (STCONm) = Ω((log m)2).

This tells us that any monotone circuit that computes
st-connectivity in directed graphs on n vertices necessarily has
depth Ω((log n)2).
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