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Motivation

AC0 circuits have been identified to have limitations in computation
ability.

Natural question : Can we generate pseudorandom distributions that
“looks random” ?

In general : No answer !

Let us focus on circuits and ask this question.

Say a circuit uses a set of random bits (gets as input) for
computation.

Question

Are there prob. distributions which circuit cannot distinguish, i.e. the
circuit will compute the same value on expectation ?
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Definition and Notations

For a boolean function F : {0, 1}n → {0, 1}, distribution µ : {0, 1}n → R,
we denote

Notations

Eµ[F ] : Expected value of F when inputs are drawn according to µ.

µ(X ) : Probability of event X under µ.

E [F ] : Expected value of F when inputs are drawn uniformly.

Pr(X ) : Probability of event X under uniform distribution.

r -independence

A probability distribution µ defined on {0, 1}n is said to be r -independent
for (r ≤ n) if, ∀I ⊆ [n], |I | = r , ij ∈ I ,

µ(xi1 , xi2 , . . . , xir ) = U(xi1 , xi2 , . . . , xir ) =
1

2r
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Definition

ε-fooling

A distribution µ is said to ε-fool a circuit C computing a boolean function
F if,

|Eµ(F )− E (F )| < ε

`2 Norm

For a boolean function F : {0, 1}n → {0, 1} is defined as,

||F ||22 =
1

2n

∑
x∈{0,1}n

|F (x)|2
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Problem statement

Problem

Given a AC0 circuit of size m depth d computing F , for every
r -independent distribution µ on {0, 1}n, can µ ε-fool C ?

How large r has
to be ?

First asked by Linial and Nisan in 1990. Conjectured that
polylogarithmic independence suffices.

Shown to be possible for depth to AC0 circuits (of size m) by Louay
Bazzi in 2007 where r = O(log2 m

ε ) for DNF formulas.

The conjucture has been finally proved in this paper !
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Braverman’s Theorem

Theorem

For any AC0 circuit C of size m and depth d computing F , any
r -independent circuit ε-fools C where.

r =
(

log
(m
ε

))O(d2)

Proof Techniques used :

Razbarov-Smolensky method of approximation of boolean functions
by low degree polynomial.

Linial-Mansoor-Nisan [LMN] result that gives low degree
approximation for functions computable in AC0.

Linear of Expectation.
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Proof Outline

Fix F to be the function computed by the circuit and f to be its
approximation.

Raz-Smol. method gives us an approximating polynomial that agree
on all but a small fraction of inputs.

Does not guarentee anything about their expected values : can be
highly varying on non-agreeing points.

Key observation : The error indicator function E = 0 if F = f , 1 if
F 6= f can be computed by an AC0 circuit.

Now apply LMN, get an approximation Ẽ for E .

Define f ′ = f (1− Ẽ).

Then argue that ||F − f ′||22 is small for both uniform distribution and
r -independent distribution µ.
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Then argue that ||F − f ′||22 is small for both uniform distribution and
r -independent distribution µ.

Dinesh (IITM) Fooling AC0 circuits April 18, 2012 8 / 14



Outline

1 Introduction

2 Main Theorem
Proof Outline
Construction of approximation polynomial

3 Proof of Theorem

Dinesh (IITM) Fooling AC0 circuits April 18, 2012 8 / 14



Construction of approximation polynomial

Lemma

Let µ be any probability distribution on {0, 1}n. Let F be a boolean
function computed by a circuit of depth d and size m. Then for any
parameter s,

there is a degree r = (s · logm)d polynomial f .

error function µ(E(x) = 1) < (0.82)sm

E(x) = 0 =⇒ f (x) = F (x).

E can computed by a depth (d + 3) circuit.

Base case : xi → xi , xi → 1− xi .

Induction case : (AND case, OR is symmetric)
Let G = G1 ∧ G2 . . . ∧ Gk and their approximations g1, g2, . . . , gk for
k < m.

Assume k = 2l .

Pick l subsets from {1, 2, . . . , k}, i th set is picked with probability 2−i .
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Construction of approximation polynomial (Cont...)

Repeat this s times (independently) to get t = sl = s log k subsets.

The approximation polynomial for the AND gate is

f =
t∏

i=1

∑
j∈Si

gj − |Si |+ 1


.

Need to bound P[F 6= f ].

Fix G1(x),G2(x), . . . ,Gk(x).

What is error probability for a random choice of set Si ?

G (x) = 1 =⇒ No error since all Gj(x) = 1.

G (x) = 0 =⇒ At least one Gj(x) = 0.

We ask : when will

t∏
i=1

∑
j∈Si

Gj(x)− |Si |+ 1

 = 0
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Construction of approximation polynomial (Cont...)

At least one set Si such that∑
j∈Si

Gj = |S | − 1

Let there be 1 ≤ z ≤ k zeros in G1, . . . ,Gk . Hence Si must be
looking at exactly 1 zero.

Let 2α ≤ z < 2α+1. Let S be a set picked with probability 2−α−1.

Prob[Exactly one zero] = z · p · (1− p)z−1 ≥ 1
2 · (1− p)1/p−1 > 0.18.

Prob[Making error in one iteration for an AND gate] ≤ 0.82. In s
iterations - (0.82)s .

Prob[Atleast one AND makes error] ≤ m(0.82)s .
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Circuit computing E

No error if the random sets picked have at least one set that looks at
exactly one zero.

Can decide F 6= f , by looking at ≤ ts sets and check if no sets
contains exactly one zero.

Resultant circuit has depth < (d + 3).
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Results used

Proposition

For any f : Rn → R that is a degree r polynomial, let µ be an
r -independent distribution. Then, f is completely fooled by µ.

Eµ[f ] = E [f ]

LMN Theorem

Let F : {0, 1}n → {0, 1} be a boolean function computed by depth d
circuit of size m, then for any t there is a degree t polynomial such that,

||F − f̃ ||22 =
1

2n

∑
x∈{0,1}n

|F (x)− f̃ |2 ≤ 2m · 2−t1/d/20
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Thank You!
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