Poly-logarithmic independence fools AC⁰

K Dinesh CS11M019

IIT Madras

April 18, 2012

Dinesh (IITM)

Image: A math and A

Image: A mathematical states and a mathem

< □ > < ---->

2 Main Theorem

• Proof Outline

• Construction of approximation polynomial

2 Main Theorem

- Proof Outline
- Construction of approximation polynomial

3 Proof of Theorem

Main Theorem

- Proof Outline
- Construction of approximation polynomial

3 Proof of Theorem

- AC⁰ circuits have been identified to have limitations in computation ability.
- Natural question : Can we generate pseudorandom distributions that "looks random" ?
- In general : No answer !

- AC⁰ circuits have been identified to have limitations in computation ability.
- Natural question : Can we generate pseudorandom distributions that "looks random" ?
- In general : No answer !
- Let us focus on circuits and ask this question.
- Say a circuit uses a set of random bits (gets as input) for computation.

- AC⁰ circuits have been identified to have limitations in computation ability.
- Natural question : Can we generate pseudorandom distributions that "looks random" ?
- In general : No answer !
- Let us focus on circuits and ask this question.
- Say a circuit uses a set of random bits (gets as input) for computation.

Question

Are there prob. distributions which circuit cannot distinguish, i.e. the circuit will compute the same value on expectation ?

Definition and Notations

For a boolean function $F : \{0,1\}^n \to \{0,1\}$, distribution $\mu : \{0,1\}^n \to \mathsf{R}$, we denote

Notations

- $E_{\mu}[F]$: Expected value of F when inputs are drawn according to μ .
- $\mu(X)$: Probability of event X under μ .
- E[F]: Expected value of F when inputs are drawn uniformly.
- Pr(X) : Probability of event X under uniform distribution.

Definition and Notations

For a boolean function $F : \{0,1\}^n \to \{0,1\}$, distribution $\mu : \{0,1\}^n \to \mathsf{R}$, we denote

Notations

- $E_{\mu}[F]$: Expected value of F when inputs are drawn according to μ .
- $\mu(X)$: Probability of event X under μ .
- E[F] : Expected value of F when inputs are drawn uniformly.
- Pr(X) : Probability of event X under uniform distribution.

r-independence

A probability distribution μ defined on $\{0,1\}^n$ is said to be *r*-independent for $(r \leq n)$ if, $\forall I \subseteq [n], |I| = r, i_j \in I$,

$$\mu(x_{i_1}, x_{i_2}, \ldots, x_{i_r}) = U(x_{i_1}, x_{i_2}, \ldots, x_{i_r}) = \frac{1}{2^r}$$

Image: A match a ma

ϵ -fooling

A distribution μ is said to $\epsilon\text{-fool}$ a circuit ${\it C}$ computing a boolean function ${\it F}$ if,

$$|E_{\mu}(F) - E(F)| < \epsilon$$

ℓ_2 Norm

For a boolean function $F: \{0,1\}^n \to \{0,1\}$ is defined as,

$$||F||_2^2 = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} |F(x)|^2$$

Given a AC⁰ circuit of size *m* depth *d* computing *F*, for every *r*-independent distribution μ on $\{0,1\}^n$, can $\mu \epsilon$ -fool *C* ?

Given a AC⁰ circuit of size *m* depth *d* computing *F*, for every *r*-independent distribution μ on $\{0,1\}^n$, can $\mu \epsilon$ -fool *C*? How large *r* has to be ?

Given a AC⁰ circuit of size *m* depth *d* computing *F*, for every *r*-independent distribution μ on $\{0, 1\}^n$, can μ ϵ -fool *C*? How large *r* has to be ?

- First asked by Linial and Nisan in 1990. Conjectured that polylogarithmic independence suffices.
- Shown to be possible for depth to AC^0 circuits (of size *m*) by Louay Bazzi in 2007 where $r = O(\log^2 \frac{m}{\epsilon})$ for DNF formulas.
- The conjucture has been finally proved

Given a AC⁰ circuit of size *m* depth *d* computing *F*, for every *r*-independent distribution μ on $\{0, 1\}^n$, can μ ϵ -fool *C*? How large *r* has to be ?

- First asked by Linial and Nisan in 1990. Conjectured that polylogarithmic independence suffices.
- Shown to be possible for depth to AC^0 circuits (of size *m*) by Louay Bazzi in 2007 where $r = O(\log^2 \frac{m}{\epsilon})$ for DNF formulas.
- The conjucture has been finally proved in this paper !

2 Main Theorem

- Proof Outline
- Construction of approximation polynomial

3 Proof of Theorem

Theorem

For any AC⁰ circuit C of size m and depth d computing F, any r-independent circuit ϵ -fools C where.

$$r = \left(\log\left(\frac{m}{\epsilon}\right)\right)^{O(d^2)}$$

Proof Techniques used :

• Razbarov-Smolensky method of approximation of boolean functions by low degree polynomial.

Theorem

For any AC⁰ circuit C of size m and depth d computing F, any r-independent circuit ϵ -fools C where.

$$r = \left(\log\left(\frac{m}{\epsilon}\right)\right)^{O(d^2)}$$

Proof Techniques used :

- Razbarov-Smolensky method of approximation of boolean functions by low degree polynomial.
- Linial-Mansoor-Nisan [LMN] result that gives low degree approximation for functions computable in AC⁰.

Theorem

For any AC⁰ circuit C of size m and depth d computing F, any r-independent circuit ϵ -fools C where.

$$\mathsf{r} = \left(\log\left(\frac{m}{\epsilon}\right)\right)^{O(d^2)}$$

Proof Techniques used :

- Razbarov-Smolensky method of approximation of boolean functions by low degree polynomial.
- Linial-Mansoor-Nisan [LMN] result that gives low degree approximation for functions computable in AC⁰.
- Linear of Expectation.

2 Main Theorem

• Proof Outline

• Construction of approximation polynomial

3 Proof of Theorem

• Raz-Smol. method gives us an approximating polynomial that agree on all but a small fraction of inputs.

- Raz-Smol. method gives us an approximating polynomial that agree on all but a small fraction of inputs.
- Does not guarentee anything about their expected values : can be highly varying on non-agreeing points.

- Raz-Smol. method gives us an approximating polynomial that agree on all but a small fraction of inputs.
- Does not guarentee anything about their expected values : can be highly varying on non-agreeing points.
- Key observation : The error indicator function $\mathcal{E} = 0$ if F = f, 1 if $F \neq f$ can be computed by an AC⁰ circuit.

- Raz-Smol. method gives us an approximating polynomial that agree on all but a small fraction of inputs.
- Does not guarentee anything about their expected values : can be highly varying on non-agreeing points.
- Key observation : The error indicator function $\mathcal{E} = 0$ if F = f, 1 if $F \neq f$ can be computed by an AC⁰ circuit.
- Now apply LMN, get an approximation $\tilde{\mathcal{E}}$ for $\mathcal{E}.$
- Define $f' = f(1 \tilde{\mathcal{E}})$.

- Raz-Smol. method gives us an approximating polynomial that agree on all but a small fraction of inputs.
- Does not guarentee anything about their expected values : can be highly varying on non-agreeing points.
- Key observation : The error indicator function $\mathcal{E} = 0$ if F = f, 1 if $F \neq f$ can be computed by an AC⁰ circuit.
- Now apply LMN, get an approximation $\tilde{\mathcal{E}}$ for $\mathcal{E}.$
- Define $f' = f(1 \tilde{\mathcal{E}})$.
- Then argue that $||F f'||_2^2$ is small for both uniform distribution and *r*-independent distribution μ .

2 Main Theorem

Proof Outline

• Construction of approximation polynomial

3 Proof of Theorem

Let μ be any probability distribution on $\{0,1\}^n$. Let F be a boolean function computed by a circuit of depth d and size m. Then for any parameter s,

Let μ be any probability distribution on $\{0,1\}^n$. Let F be a boolean function computed by a circuit of depth d and size m. Then for any parameter s,

• there is a degree $r = (s \cdot \log m)^d$ polynomial f.

Let μ be any probability distribution on $\{0,1\}^n$. Let F be a boolean function computed by a circuit of depth d and size m. Then for any parameter s,

- there is a degree $r = (s \cdot \log m)^d$ polynomial f.
- error function $\mu(\mathcal{E}(x) = 1) < (0.82)^{s} m$

•
$$\mathcal{E}(x) = 0 \implies f(x) = F(x).$$

Let μ be any probability distribution on $\{0,1\}^n$. Let F be a boolean function computed by a circuit of depth d and size m. Then for any parameter s,

- there is a degree $r = (s \cdot \log m)^d$ polynomial f.
- error function $\mu(\mathcal{E}(x) = 1) < (0.82)^{s}m$

•
$$\mathcal{E}(x) = 0 \implies f(x) = F(x).$$

• \mathcal{E} can computed by a depth (d+3) circuit.

Let μ be any probability distribution on $\{0,1\}^n$. Let F be a boolean function computed by a circuit of depth d and size m. Then for any parameter s,

- there is a degree $r = (s \cdot \log m)^d$ polynomial f.
- error function $\mu(\mathcal{E}(x) = 1) < (0.82)^{s}m$

•
$$\mathcal{E}(x) = 0 \implies f(x) = F(x).$$

• \mathcal{E} can computed by a depth (d+3) circuit.

Base case : $x_i \rightarrow x_i$, $\overline{x_i} \rightarrow 1 - x_i$.

Let μ be any probability distribution on $\{0,1\}^n$. Let F be a boolean function computed by a circuit of depth d and size m. Then for any parameter s,

- there is a degree $r = (s \cdot \log m)^d$ polynomial f.
- error function $\mu(\mathcal{E}(x) = 1) < (0.82)^{s}m$

•
$$\mathcal{E}(x) = 0 \implies f(x) = F(x).$$

• \mathcal{E} can computed by a depth (d+3) circuit.

Base case : $x_i \rightarrow x_i$, $\overline{x_i} \rightarrow 1 - x_i$.

• Induction case : (AND case, OR is symmetric) Let $G = G_1 \land G_2 \ldots \land G_k$ and their approximations g_1, g_2, \ldots, g_k for k < m.

Let μ be any probability distribution on $\{0,1\}^n$. Let F be a boolean function computed by a circuit of depth d and size m. Then for any parameter s,

- there is a degree $r = (s \cdot \log m)^d$ polynomial f.
- error function $\mu(\mathcal{E}(x) = 1) < (0.82)^{s}m$

•
$$\mathcal{E}(x) = 0 \implies f(x) = F(x).$$

• \mathcal{E} can computed by a depth (d+3) circuit.

Base case : $x_i \rightarrow x_i$, $\overline{x_i} \rightarrow 1 - x_i$.

- Induction case : (AND case, OR is symmetric) Let G = G₁ ∧ G₂ ... ∧ G_k and their approximations g₁, g₂, ..., g_k for k < m.
- Assume $k = 2^{l}$.
- Pick I subsets from $\{1, 2, ..., k\}$, i^{th} set is picked with probability 2^{-i}

Construction of approximation polynomial (Cont...)

- Repeat this s times (independently) to get $t = sl = s \log k$ subsets.
- The approximation polynomial for the AND gate is

$$f = \prod_{i=1}^t \left(\sum_{j \in S_i} g_j - |S_i| + 1
ight)$$

- Need to bound $P[F \neq f]$.
- Fix $G_1(x), G_2(x), \ldots, G_k(x)$.

What is error probability for a random choice of set S_i ?

- $G(x) = 1 \implies$ No error since all $G_j(x) = 1$.
- $G(x) = 0 \implies$ At least one $G_j(x) = 0$.

- Repeat this s times (independently) to get $t = sl = s \log k$ subsets.
- The approximation polynomial for the AND gate is

$$f = \prod_{i=1}^t \left(\sum_{j \in S_i} g_j - |S_i| + 1
ight)$$

- Need to bound $P[F \neq f]$.
- Fix $G_1(x), G_2(x), \ldots, G_k(x)$.

What is error probability for a random choice of set S_i ?

- $G(x) = 1 \implies$ No error since all $G_j(x) = 1$.
- $G(x) = 0 \implies$ At least one $G_j(x) = 0$. We ask : when will

$$\prod_{i=1}^t \left(\sum_{j \in S_i} G_j(x) - |S_i| + 1 \right) = 0$$

$$\sum_{j\in S_i} G_j = |S| - 1$$

• At least one set S_i such that

$$\sum_{j\in S_i} G_j = |S| - 1$$

• Let there be $1 \le z \le k$ zeros in G_1, \ldots, G_k . Hence S_i must be looking at exactly 1 zero.

$$\sum_{j\in S_i} G_j = |S| - 1$$

- Let there be $1 \le z \le k$ zeros in G_1, \ldots, G_k . Hence S_i must be looking at exactly 1 zero.
- Let $2^{\alpha} \leq z < 2^{\alpha+1}$. Let S be a set picked with probability $2^{-\alpha-1}$.

$$\sum_{j\in S_i} G_j = |S| - 1$$

- Let there be $1 \le z \le k$ zeros in G_1, \ldots, G_k . Hence S_i must be looking at exactly 1 zero.
- Let $2^{\alpha} \leq z < 2^{\alpha+1}$. Let S be a set picked with probability $2^{-\alpha-1}$.
- $Prob[Exactly one zero] = z \cdot p \cdot (1-p)^{z-1} \ge \frac{1}{2} \cdot (1-p)^{1/p-1} > 0.18.$

$$\sum_{j\in S_i} G_j = |S| - 1$$

- Let there be $1 \le z \le k$ zeros in G_1, \ldots, G_k . Hence S_i must be looking at exactly 1 zero.
- Let $2^{\alpha} \leq z < 2^{\alpha+1}$. Let S be a set picked with probability $2^{-\alpha-1}$.
- $Prob[Exactly one zero] = z \cdot p \cdot (1-p)^{z-1} \ge \frac{1}{2} \cdot (1-p)^{1/p-1} > 0.18.$
- Prob[Making error in one iteration for an AND gate] ≤ 0.82. In s iterations (0.82)^s.
- *Prob*[Atleast one AND makes error] $\leq m(0.82)^{s}$.

$$\sum_{j\in S_i} G_j = |S| - 1$$

- Let there be $1 \le z \le k$ zeros in G_1, \ldots, G_k . Hence S_i must be looking at exactly 1 zero.
- Let $2^{\alpha} \leq z < 2^{\alpha+1}$. Let S be a set picked with probability $2^{-\alpha-1}$.
- $Prob[Exactly one zero] = z \cdot p \cdot (1-p)^{z-1} \ge \frac{1}{2} \cdot (1-p)^{1/p-1} > 0.18.$
- Prob[Making error in one iteration for an AND gate] ≤ 0.82. In s iterations (0.82)^s.
- *Prob*[Atleast one AND makes error] $\leq m(0.82)^{s}$.

• No error if the random sets picked have at least one set that looks at exactly one zero.

- No error if the random sets picked have at least one set that looks at exactly one zero.
- Can decide F ≠ f, by looking at ≤ ts sets and check if no sets contains exactly one zero.

- No error if the random sets picked have at least one set that looks at exactly one zero.
- Can decide F ≠ f, by looking at ≤ ts sets and check if no sets contains exactly one zero.
- Resultant circuit has depth < (d+3).

Introduction

Main Theorem

- Proof Outline
- Construction of approximation polynomial

3 Proof of Theorem

Proposition

For any $f : \mathbb{R}^n \to \mathbb{R}$ that is a degree *r* polynomial, let μ be an *r*-independent distribution. Then, *f* is completely fooled by μ .

 $E_{\mu}[f] = E[f]$

LMN Theorem

Let $F : \{0,1\}^n \to \{0,1\}$ be a boolean function computed by depth d circuit of size m, then for any t there is a degree t polynomial such that,

$$||F - \tilde{f}||_2^2 = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} |F(x) - \tilde{f}|^2 \le 2m \cdot 2^{-t^{1/d}}/20$$

Thank You!

◆ □ ▶ ◆ 🗇