Circuit Lower Bounds, Help Functions and Remote point problem

T Devanathan

IIT - Madras

April 10, 2012

1 Boolean Circuit Lower Bounds

2 Remote Point Problem

3 SizeDepth_H(n^c , d) and polynomial time many-one closure of AC^0

4 Future work

Boolean Circuits

Definitions

$\begin{array}{l} Size(s(n)) \mbox{ A Family of functions } \{f_n: \{0,1\}^n \rightarrow \{0,1\}\}_{n \in \mathbb{N}} \\ \mbox{ belongs to Size}(s(n)) \mbox{ if there exists a circuit of size} \\ s(n) \mbox{ that can compute the functions.} \\ SizeDepth(s(n), d(n)) \mbox{ A Family of functions } \{f_n: \{0,1\}^n \rightarrow \{0,1\}\}_{n \in \mathbb{N}} \\ \mbox{ belongs to SizeDepth}(s(n), d(n)) \mbox{ if there exists a circuit of size } s(n) \mbox{ and depth } d(n) \mbox{ that can compute the functions.} \\ \end{array}$

- AC^0 circuits are $SizeDepth(n^O(1), O(1))$ circuits.
- To prove size lower bounds, we need to come up with an explicit boolean function that cannot be computed by a circuit of that size.
- A family of Boolean functions {f_n}_{n>0} is explicit if there is a 2^{n^{O(1)}} time algorithm that, given n and x, can compute f_n(x)

Theorem

Every function f computed by a boolean circuit of depth d and size s is represented by a probabilistic polynomial $p(x_1, x_2, ..., x_n, r_1, , r_t)$ of degree $O(log(1/\epsilon)log^2n)^d$ that represents $f(x_1, , x_n)$ with error s ϵ .

Yao's Principle

The expected cost of any randomized algorithm for solving a given problem, on the worst case input for that algorithm, can be no better than the expected cost for a worst-case random probability distribution on the inputs, of the deterministic algorithm that performs best against that distribution.

Boolean circuits with Help Functions

- We try to prove size lower bounds for constant size boolean circuits with help functions.
- Consider $h_1, h_2, h_3, ..., h_m : \{0, 1\}^n \rightarrow \{0, 1\}$ such that, given x, the circuit has "free" computations of $\{h_1(x), h_2(x), ..., h_m(x)\}$.

Definition

SizeDepth_H(s, d) A set of boolean functions $f : \{0, 1\}^n \to \{0, 1\}$ such that there is a circuit C of size s and depth d such that $f(\bar{x}) = C(h_1(\bar{x}), h_2(\bar{x}), ..., h_m(\bar{x}))$, where \bar{x} denotes the *n*-tuple $(x_1, x_2, x_3, ..., x_n)$.

For the lower bound problem, given a set of help functions H and size s ∈ N, we need to come up with a explicit boolean function g such that g ∉ SizeDepth_H(s, d).

- Given a k-dimensional subspace V ⊆ 𝔽₂^N and quantity r, the problem is to find a vector u ∈ 𝔽₂^N such that ∀v ∈ V, dist(u, v) ≥ r.
- Here, dist(u, v) is the Hamming distance between u and v.
- We call an efficient algorithm that solves this problem an (N, k, r)-solution to the problem.

- The lower bound problem for Boolean circuit with help functions is connected to the RPP.
- Current best deterministic solution to RPP(Alon-Panigrahy-Yekhanin) is (N, k, O(^{Nlog(k)}/_k)).
- We need a deterministic solution with somewhat stronger parameters.

Theorem

Let $N = 2^n$. For any constant $d \in \mathbb{N}$, and any constants $c_0 > c_1 > c_2 > 0$ such that $c_0 > (c_1 + 2c_2)d + c_2$, if the remote point problem with parameters (N, k, r) can be solved in time $2^{n^{O(1)}}$, then, for any given set of help functions H such that $|H| = 2^{(\log n)^{c_2}}$ and $s = cn^c$, there is an explicit boolean function that doesn't belong to SizeDepth_H(s, d) for large enough n. Proof:

- Lower bound problem find a boolean function g not in $SizeDepth_H(s, d)$.
- Consider a circuit $C \in SizeDepth_H(s, d)$. Computes $C(h_1(\bar{x}), h_2(\bar{x}), ..., h_m(\bar{x}))$.
- From the previous theorems, we can conclude that there is a polynomial p₀ such that
 Prob[p₀(h₁(x̄), ..., h_m(x̄)) = C(h₁(x̄), h₂(x̄), ..., h_m(x̄))] ≥ (1 - cm^c ε),
 when x̄ is picked uniformly at random from {0,1}ⁿ.
- The degree of the p_0 above is $O(\log n)^{c'_0}$

- Consider the subspace V of \mathbb{F}_2^N spanned by all degree $\leq O(\log n)^{c'_0}$ polynomials in $h_1, h_2, ..., h_m$.
- Any function g such that $dist(g, V) \ge \epsilon N$ cannot be computed by a small constant-depth circuit using $h_1, h_2, ..., h_m$.
- Such a function will be given by the (N, k, r) solution of RPP if k is the dimensionality of V and $r = \frac{N}{2^{(\log r)^{c_1}}}$.
- $g \notin SizeDepth_H(s, d)$.

- Solution to RPP still doesnt give solution to the lower bound problem.
- The best solution currently is an $(N, k, N \frac{O(\log k)}{k})$ -solution. Need an $(N, k, N \frac{1}{k^{o(1)}})$ -solution.

$SizeDepth_{H}(n^{c}, d)$ and polynomial time many-one closure of AC^{0}

- Connection between explicit lower bounds against SizeDepth_H(n^c, d) and lower bounds against the polynomial time many-one closure of AC⁰.
- For a complexity class C, $\mathcal{R}_m^p(C)$ denotes the polynomial time many-one closure of C.

Theorem

Suppose, for every fixed $d \in N$, there is a $2^{n^{O(1)}}$ time algorithm A that takes as input a set of help functions $H = \{h_i : \{0,1\}^n \to \{0,1\} | i \in [m]\}$ where $m \leq n^{\log n}$, and A outputs the truth-table of a Boolean function $g : \{0,1\}^n \to \{0,1\}$ such that for any $c > 0, g \notin SizeDepth_H(n^c, d)$ for almost all n. Then EXP $\not\subseteq \mathcal{R}_m^p(AC^0)$.

- To Prove : EXP does not polynomial-time many-one reduce to AC^0 .
- Sufficient to prove that $EXP \not\subseteq \mathcal{R}^p_m(AC^0_d)$ for each d as EXP has problems that are complete for it under poly-time many-one reductions.

- Diagonalisation argument.
- $R_1, R_2, R_3, ...$ a standard enumeration of all poly time many-one reductions.
- Fix n, EXP machine, on input $x \in \{0, 1\}^n$, computes $R_n(y)$ for all $y \in \{0, 1\}^n$ by running it on each input for $n^{\log n}$ time. Trivially, the size of $R_n(y)$ is bounded by $n^{\log n}$.
- $m = max_{y \in \{0,1\}^n} |R_n(y)|.$
- Thus, it can produce the truth tables of help functions $\{h_i\}_{(i \in [m])}$, where $h_i(y)$ is the *i*th bit of $R_n(y)$ if exists, 0 otherwise.
- By assumption, EXP machine can compute a g_n ∉ SizeDepth{h₁,..,h_m}(n^c, d). Output g_n(x).

- A deterministic solution for RPP with slightly stronger parameters (*log k* factor) would help in proving circuit lower bounds for *AC*⁰ circuits with Help functions.
- We could try and connect the *RPP* problem to circuit lower bounds for *ACC*⁰ circuits with help functions.
- We could also attempt to move away from the constant depth functions into log depth and see if we can associate *RPP* with lower bounds for those circuits.

Thank You