
Circuit Complexity of Regular Languages
Michal Koucky

Presented by,
Sunil K. S

April 13, 2012

1 / 28

Contents

Theme of Presentation

Algebraic Preliminaries: Monoids

Operations on Monoids

Monoids as Recognizers

Monoids and Automata

Circuit Complexity basics

Regular Languages and Circuit Complexity

Mapping the Landscape

Circuit Size of Regular Languages

Wires vs. Gates

References

2 / 28

Theme of Presentation

Regular Languages

Algebra: Monoids and Groups

Relation between Regular Languages and Monoids

Circuit complexity of Regular Languages

Circuit complexity of Reg.Lang. in terms of Monoid Product

3 / 28

Algebraic Preliminaries: Monoids

Monoid: A set M together with an associative binary
operation that contains an identity element 1M such that
∀m ∈ M,m.1M = 1M .m = m

Represented as (M, ∗, e)

Group: Monoid with an inverse element

Finite and infinite monoids
Group free monoids
Solvable and unsolvable groups
A group G is solvable if it has a subnormal series

G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gn = 1

where each quotient Gi/Gi+1 is an abelian group.

4 / 28

Operations on Monoids

Product over a monoid: f : M∗ → M such that
f (m1,m2, · · · ,mn) = m1.m2.....mn

a-word problem: For a ∈ M, the language of words from M∗

that multiply out to a.

word problem: if not concerned about the choice of a.

All word problems over M are regular languages.

5 / 28

Monoids as Recognizers

Morphism: from (M, ., e) to (N, ∗, f) is a function φ : M → N
such that u, v ∈ M, φ(u.v) = φ(u) ∗ φ(v) and φ(e) = f .
Eg: len : Σ∗ → N with len(x) = |x |
Given a monoid (M, ., e), a subset X of M and morphism
φ : Σ∗ → M, the language defined by X w.r.t φ is φ−1(X)

L ⊆ Σ∗ can be recognized by M if there exists a morphism
φ : Σ∗ → M and a subset X ⊆ M so that L = φ−1(M).

6 / 28

Monoids as Recognizers Cntd..

A language is regular iff it can be recognized by some finite
monoid (a variant of Kleene’s theorem).

Let L is recognized by the monoid M via the morphism φ and
X ⊆ M
Define AM = (M,Σ, δ, e,X) where
δ(m, a) = m.φ(a),∀m ∈ M, a ∈ Σ
δ̂(m, a1a2 · · · an) = m.φ(a1).φ(a2)....φ(an)
δ̂(e, a1a2 · · · an) = e.φ(a1).φ(a2)....φ(an) = φ(a1a2 · · · an)
Thus L(AM) = {x |φ(x) ∈ X} = L

Syntactic monoid: Minimal monoid M(L) that recognize L.

Syntactic morphism: νL : Σ∗ → M(L)

ML is the monoid of state transformations generated by
minimum state FSA recognizing L

7 / 28

Monoids as Recognizers Cntd..

A language is regular iff it can be recognized by some finite
monoid (a variant of Kleene’s theorem).

Let L is recognized by the monoid M via the morphism φ and
X ⊆ M
Define AM = (M,Σ, δ, e,X) where
δ(m, a) = m.φ(a),∀m ∈ M, a ∈ Σ
δ̂(m, a1a2 · · · an) = m.φ(a1).φ(a2)....φ(an)
δ̂(e, a1a2 · · · an) = e.φ(a1).φ(a2)....φ(an) = φ(a1a2 · · · an)
Thus L(AM) = {x |φ(x) ∈ X} = L

Syntactic monoid: Minimal monoid M(L) that recognize L.

Syntactic morphism: νL : Σ∗ → M(L)

ML is the monoid of state transformations generated by
minimum state FSA recognizing L

7 / 28

Monoids and Automata

Automata to Monoid

1

0

1 0

1

0, 1

s t

a

b

0

Figure: Automata

Inputs 0 1 00 01 10 11 000 001 010 011 100 101 110 111
s b a b a b r b a b r b a r r
a b r b a r r b a b r r r r r
b b a b a b r b a b r b a r r
r r r r r r r r r r r r r r r
Same as 0 0 01 0 11 10 1 11 11

8 / 28

Monoids and Automata Cntd..

∗ T0 T1 T01 T10 T11

T0 T0 T01 T01 T10 T11

T1 T10 T11 T1 T11 T11

T01 T0 T11 T01 T11 T11

T10 T10 T1 T1 T10 T11

T11 T11 T11 T11 T11 T11

T10 ∗ T01 = T1001 = T100 ∗ T1 = T10 ∗ T1 = T101 = T 1

and
T01 ∗ T01 = T0101 = T010 ∗ T1 = T0 ∗ T1 = T01

Identity: Tλ such that Ts ∗Tλ = Tλ ∗Ts = Ts , for all input strings
s.

9 / 28

Monoids and Automata Cntd..

Monoid to Automata

Definition

Machine of a Monoid: If [M, ∗] is a finite monoid, then the
machine of M, denoted m(M), is the state machine with state set
M, input set M, and next-state function t : M ×M → M defined
by t(s, x) = s ∗ x .

Example

[Z3,×3]

0
1

2

0, 1, 2
1

1

0

0

2

2

10 / 28

Circuit Complexity

Size of a circuit: Number of gates

NC 0: Constant depth, bounded fan-in circuits

AC 0: Constant depth, unbounded fan-in circuits

AC 0[q]: AC 0 circuits with MODq gates

ACC 0: AC 0 circuits with arbitrary MODq gates

TC 0: Constant depth threshold circuits

NC 1: Log depth, bounded fan-in, polynomial size circuits

11 / 28

Reg. Lang. & Circuit Complexity

All regular languages are computable by linear size NC 1

circuits.

Regular Languages in AC 0 and ACC 0 : Computable by almost
linear size circuits.

Existence of NC 1-complete languages
Eg: Boolean formula value problem (BFVP): given a Boolean
formula χ and values for the variables of χ, does χ evaluate
to 1?

To separate ACC 0 and NC 1 it is suffices to prove that for
some ε > 0 an Ω(n1+ε) lower bound on the circuit size of
ACC 0 circuits which computing certain NC 1-complete
functions.

12 / 28

Reg. Lang. & Circuit Complexity

All regular languages are computable by linear size NC 1

circuits.

Regular Languages in AC 0 and ACC 0 : Computable by almost
linear size circuits.

Existence of NC 1-complete languages
Eg: Boolean formula value problem (BFVP): given a Boolean
formula χ and values for the variables of χ, does χ evaluate
to 1?

To separate ACC 0 and NC 1 it is suffices to prove that for
some ε > 0 an Ω(n1+ε) lower bound on the circuit size of
ACC 0 circuits which computing certain NC 1-complete
functions.

12 / 28

Reg. Lang. & Circuit Complexity Cntd...

The relation between circuit complexity of regular language and
the word problem over its syntactic monoid ML

For L ⊆ Σ∗, L=k means L ∩ Σk

Proposition

If a regular language L is computable by a circuit family of size
s(n) and depth d(n) and for some k ≥ 0, νL(L=k) = M(L) then
the product over its syntactic monoid M(L) is computable by a
circuit family of size O(s(O(n)) + n) and depth d(O(n)) + O(1)

Proposition

If the product over a monoid M is computable by a circuit family
of size s(n) and depth d(n) then the regular language with the
syntactic monoid M is computable by a circuit family of size
s(n) + O(n) and depth d(n) + O(1)

13 / 28

Mapping the landscape

Theorem

All regular languages are computable by linear size NC 1 circuits.

It is suffice to show that there are NC 1 circuits of linear size
for the product of n elements over a fixed monoid M.

Product of n elements ⇒ product of n/2 elements (computing
the product of adjacent pairs of elements in parallel).

Final circuit have logarithmic depth and linear size.

14 / 28

Mapping the landscape Cntd...

Can all regular languages be put into even smaller circuit class?

It is very unlikely: Barrington [1].

Monoid M contains a non-solvable group ⇒ the word problem
over M is hard for NC 1 under projections.

Projection:

Simple reduction: w ∈ L to w ′ ∈ L′.
Each symbol of w ′ depends on at most one symbol of w .
The length of w ′ depends only on the length of w .

Unless NC 1 collapses to smaller classes, NC 1 circuits are
optimal for some regular languages.

Theorem

Any regular language whose syntactic monoid contains a
non-solvable group is hard for NC 1 under projections.

15 / 28

Mapping the landscape Cntd...

Can all regular languages be put into even smaller circuit class?
It is very unlikely: Barrington [1].

Monoid M contains a non-solvable group ⇒ the word problem
over M is hard for NC 1 under projections.

Projection:

Simple reduction: w ∈ L to w ′ ∈ L′.
Each symbol of w ′ depends on at most one symbol of w .
The length of w ′ depends only on the length of w .

Unless NC 1 collapses to smaller classes, NC 1 circuits are
optimal for some regular languages.

Theorem

Any regular language whose syntactic monoid contains a
non-solvable group is hard for NC 1 under projections.

15 / 28

Mapping the landscape Cntd...

Can all regular languages be put into even smaller circuit class?
It is very unlikely: Barrington [1].

Monoid M contains a non-solvable group ⇒ the word problem
over M is hard for NC 1 under projections.

Projection:

Simple reduction: w ∈ L to w ′ ∈ L′.
Each symbol of w ′ depends on at most one symbol of w .
The length of w ′ depends only on the length of w .

Unless NC 1 collapses to smaller classes, NC 1 circuits are
optimal for some regular languages.

Theorem

Any regular language whose syntactic monoid contains a
non-solvable group is hard for NC 1 under projections.

15 / 28

Mapping the landscape Cntd...

Can all regular languages be put into even smaller circuit class?
It is very unlikely: Barrington [1].

Monoid M contains a non-solvable group ⇒ the word problem
over M is hard for NC 1 under projections.

Projection:

Simple reduction: w ∈ L to w ′ ∈ L′.
Each symbol of w ′ depends on at most one symbol of w .
The length of w ′ depends only on the length of w .

Unless NC 1 collapses to smaller classes, NC 1 circuits are
optimal for some regular languages.

Theorem

Any regular language whose syntactic monoid contains a
non-solvable group is hard for NC 1 under projections.

15 / 28

Mapping the landscape Cntd...

Theorem

If a language L has a group-free syntactic monoid M(L) then L is
in AC 0

Regular languages with group-free syntactic monoids:
Star-free languages or non-counting languages.

Can be described by using only union, concatenation and
complement operations.

Proof (by Chandra) uses the characterization of counter-free
regular languages by flip-flop automata of McNaughton and
Papert [4].

Showed that prefix product over carry semi-group is
computable by AC 0 circuits.

Carry semi-group:
Monoid with three elements P,R,S : xP = x , xR = R, xS = S
for any x ∈ {P,S ,R}.

16 / 28

Mapping the landscape Cntd...

Theorem

If a monoid M contains a group then the product over M is not in
AC 0

Proof shows how the product over monoid with a group can
be used to count number of ones in an input from {0, 1}∗
modulo some constant k ≥ 2.

By the result of Furst, Saxe and Sipser [5] that cannot be
done in AC 0.

Hence Product over monoids containing groups cannot be
done in AC 0.

17 / 28

Mapping the landscape Cntd...

The language LENGTH(2) of words of even length:

Its syntactic monoid contains a group.
It is in AC 0

Theorem

A regular language is in AC 0 iff for every k ≥ 0, the image of L=k

under the syntactic morphism νL(L=k) does not contain a group.

L is in AC 0 iff it can be described by a regular expression using
operations union, concatenation and complement with the
atom {a} for every a ∈ Σ and LENGTH(q) for every q ≥ 1.

18 / 28

Mapping the landscape Cntd...

Theorem

If a syntactic monoid of a language contains only solvable groups
then the language is computable by ACC 0 circuits

Example: PARITY of words from {0, 1}∗.

Regular Languages:

Some of them are complete for NC 1

Some of them are computable in AC 0

Otherwise they are in ACC 0

TC 0 does not get assigned any languages unless it is equal to
NC 1 or ACC 0.

Proving regular language whose syntactic monoid contain
non-solvable group is in TC 0 would collapse NC 1 to TC 0

19 / 28

Mapping the landscape Cntd...

Theorem

If a syntactic monoid of a language contains only solvable groups
then the language is computable by ACC 0 circuits

Example: PARITY of words from {0, 1}∗.

Regular Languages:

Some of them are complete for NC 1

Some of them are computable in AC 0

Otherwise they are in ACC 0

TC 0 does not get assigned any languages unless it is equal to
NC 1 or ACC 0.

Proving regular language whose syntactic monoid contain
non-solvable group is in TC 0 would collapse NC 1 to TC 0

19 / 28

Circuit size of regular languages

All regular languages are computable by linear size NC 1

circuits.

Can anything similar be said about regular languages in AC 0

or ACC 0?

Th2: Language over {0, 1} of that contain at least two ones

Regular language
Can be computed by AC 0

Check all pairs of input positions: whether anyone of them
contains two ones.
Circuit size: quadratic.
Ragde and Wigderson [6]

Thk for up to poly-logarithmic k are computable by linear size
AC 0 circuits.
Construction is based on perfect hashing

20 / 28

Circuit size of regular languages

All regular languages are computable by linear size NC 1

circuits.

Can anything similar be said about regular languages in AC 0

or ACC 0?

Th2: Language over {0, 1} of that contain at least two ones

Regular language
Can be computed by AC 0

Check all pairs of input positions: whether anyone of them
contains two ones.
Circuit size: quadratic.
Ragde and Wigderson [6]

Thk for up to poly-logarithmic k are computable by linear size
AC 0 circuits.
Construction is based on perfect hashing

20 / 28

Circuit size of regular languages Cntd..

Size reduction of constant depth circuits computing regular
languages

Let L be a regular language and the product over its syntactic
monoid is computable by O(nk)-size constant-depth circuits.
Divide an input x ∈ M(L)n into consecutive blocks of size

√
n

and compute product of each block in parallel.
Compute the product of the

√
n products

Total size is O(
√

n.nk/2) = O(n(k+1)/2)
Depth of the circuits only doubles.

Proposition

Let L be a regular language computable by a polynomial-size
constant-depth circuits over arbitrary gates. If the product over its
syntactic monoid M(L) is computable by circuits of the same size
then for every ε > 0, there is a constant-depth circuit family of size
O(n1+ε) that computes L.

21 / 28

Circuit size of regular languages Cntd..

Theorem

Let g0(n) = n1/4 and further for each d = 0, 1, 2, · · · ,
gd+1(n) = g∗

d (n). Every regular languages L with a group-free
syntactic monoid is computable by AC 0 circuits of depth O(d) and
size O(n.g2

d (n)), for any d ≥ 0.

g∗(n) = min{i : g i (n) ≤ 1}
g i (.) denotes g(.) iterated i-times

Chandra proved that almost all languages in AC 0 are
computable by circuit families of almost linear size.

True for product over group-free monoids

Theorem

Every regular languages L in AC 0 is computable by AC 0 circuits of
depth O(d) and size O(n.g2

d (n)), for any d ≥ 0.

22 / 28

Circuit size of regular languages Cntd..

Proof.

L ∈ AC 0 ⇒ ∃M (a group free monoid) and k ≥ 1 such that
all words of length divisible by k are mapped into M by the
syntactic morphism of L.

It is suffices to show that we can compute νL(w) for any
w ∈ Σn, n ≥ 1

Design a circuit:

Divide w into blocks b1, b2, · · · , bm of length k and one block
b of length at most k
For each bi , compute the mapping νL(bi) to obtain elements
in M.
Compute the product m′ = νL(b1).νL(b2) · · · νL(bm) using
circuit of depth O(d) and size O(n.g 2

d (n))
Compute νL(w) = m′.νL(b)
As k is a constant, the depth of the circuit will be O(d) and
size O(n.g 2

d (n))

23 / 28

Circuit size of regular languages Cntd..

Theorem

Every regular language L whose syntactic monoid contains only
solvable groups is computable by ACC 0 circuits of size O(n.g2

i (n)).

Assuming that ACC 0 and NC 1 are different the above
theorem indeed applies to all regular languages in ACC 0 .

Proof is by an induction on the depth of the regular expression
describing L.

24 / 28

Wires vs. gates

Theorem

Let L be a regular language.

If L is in AC 0 then for every d ≥ 0 it is computable by AC 0

circuits using O(ng2
d (n)) wires.

If L is in ACC 0 and it is not hard for NC 1 then for every d ≥ 0
it is computable by ACC 0 circuits using O(ng2

d (n)) wires.

If L is in ACC 0 then for every ε > 0 it is computable by ACC 0

circuits using O(n1+ε) wires.

25 / 28

Wires vs. gates Cntd..

Theorem

The class of regular languages computable by ACC 0 circuits using
linear number of wires is a proper subclass of the languages
computable by ACC 0 circuits using linear number of gates.

It is not known however whether the same is true for AC 0.

Open Problem

Are the classes of regular languages computable by AC 0 circuits
using linear number of gates and liner number of wires different?

26 / 28

References

D. A. Barrington. Bounded-Width Polynomial-Size Branching
Programs Recognize Exactly Those Languages in NC 1. Journal
of Computer and System Sciences, 38(1):150164,1989.

A. K. Chandra, S. Fortune, and R. J. Lipton. Unbounded
fan-in circuits and associative functions. Journal of Computer
and System Sciences, 30:222234, 1985.

H. Straubing. Families of recognizable sets corresponding to
certain varieties of finite monoids. Journal of Pure and Applied
Algebra, 15(3):305318, 1979.

R. McNaughton and S.A. Papert. Counter-Free Automata.
The MIT Press, 1971.

M. Furst, J. Saxe, and M. Sipser. Parity, circuits and the
polynomial time hierarchy. Mathematical Systems Theory,
17:1327, 1984.

P. Ragde and A. Wigderson. Linear-size constant-depth
polylog-threshold circuits. Information Processing Letters,
39:143146, 1991. 27 / 28

Thank you all....!

28 / 28

