Amplifying lower bounds by means of self-reducibility

Eric Allender, Michal Koucky

Presented by, Balagopal

April 17, 2012

1/10

- Lower bounds problem
- Amplifying lower bounds
- Self-reducibility
- Some simple examples
- Self-reducubility for BFE
- Self-reducibility for MAJ

- To separate circuit complexity classes, we need to prove *superpolynomial* size lower bounds.
- Best known lower bounds are linear.
- Can we prove super-linear lower bounds?

- Certain problems have a structure which allows *amplifying* super-linear lower bounds to prove super-polynomial lower bounds.
- Note that the amplification depends on the problem.

- Solve L_n using constant depth circuits using AND₂, OR₂, NOT and oracle gates for L_n^ε
- These reductions are called pure $\leq_T^{NC^0}$ downward self-reductions
- The work is done mainly by the oracle gates

- AND_n using $AND_{\sqrt{n}}$
- The product over a finite monoid, $(W_M)_n$ using $(W_M)_{\sqrt{n}}$
- How can we use this to amplify lower bounds?

- *BFE* Given a boolean formula and the values of variables, check whether it evaluates to 1.
- The formula is well-balanced. That is, it can be represented as a complete binary tree.
- *BFE* is *NC*¹-complete.

- MAJ_n TC^0 complete
- Can be computed by NC^0 circuits with $MAJ_{\sqrt{n}}$ oracle gates
- Idea: Compute the sum of n 1-bit integers and compare with n/2
- Key lemma: Given m, ℓ-bit integers transform to ℓ,
 ℓ + log(m + 1) bit integers such that y₁ + ... y_m = z₁ + ... z_ℓ using O(ℓm) MAJ_{2m} gates.

- BFE requires $n^{1+\epsilon_d}$ size on depth $d TC^0$ circuits
- If the dependence on depth is eliminated, we have shown $\mathcal{T}\mathcal{C}^0\neq \mathcal{N}\mathcal{C}^1$

Thank you