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Coding theory had its inception in the late 1940’s with the theory of reliable communication
over a channel in the presence of noise - an area that started with the pioneering work of
Claude Shannon and Richard Hamming. The former addressed answered the fundamental
questions about the possibility of the use of codes for reliable communication and the later
develped some basic combinatorial constructions of error correcting codes that laid the
foundations for the work later.

Theoretical computer scientists have a major role to play in the algorithmic aspects of coding
theory research, and coding theory has proved to be instrumental in several interesting
results in theoretical computer science as well. This quarter of the course will aim to
discuss some of the important aspects of the theory as well as some of the applications to
research in theoretical computer science. However, we do not intend to be exhaustive.

This lecture will address some of the classical ideas in the theory. A typical situation that
we are interested in is as follows: Alice has some information to be sent out to Bob. The
data is represented as a string over some alphabet. She sends it through a channel which
could introduce errors in the transmission. This has two incarnations one can immediately
see.

Communication over time : Alice stores some information on a magnetic disk and tries to
retrieve it at a future point in time. In this case Alice could be thought of as communicating
to herself through the disk and the parties are at two points in time.
Communication over space: Alice and Bob are physically apart, at two points in space,
and uses the physical channel for communication. The model and the theory we will be
describing applies to both of them.

For our purpose we will be interested in understanding the give and take that this indepen-
dently developed branch of study has with theoretical computer science. There has been
several surprising applications of the theory and the associated mathematical objects, in
areas like algorithms, complexity theory and cryptography. Before getting into the applica-
tions side we will set the stage in which these objects are being looked at in a fundamental
way.

The area was initiated by two path-breaking papers in the late 40s. One by Shannon which
gave a mathematical treatise of the model of communication channel and the parameter
values that can be achieved and the second by Hamming which gave the theory of error
correcting codes which he developed with a clear engineering motivation too (and hence
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is more constructive) : storing information on a magnetic disk and then retrieving it later
even when there has been a few errors.

1 Modeling the Channel

The object of study is the channel. Messages are passed through the channel. Some messages
may get lost, some may get corrupted.

But simple questions first. Suppose the channel is harmlesss. That is, whatever bit is sent
by Alice is received by Bob precisely without any error. How do we encode the message in
such a way that the minimal information is what we need to send. This task is familar to
us by the name compression and decompression. But, how much can we compress?

Example : We want to send a message whose contents is what is written in a piece of
paper. But in advance we know that the paper is almost empty (say only 1 out of the 100
characters(or bits) is non-trivial(1) everything else is blank(0)). How do we describe this
knowledge? One way is to look at it as a probability distribution. That is, we say, choose
a character randomly from this paper, it is blank with probability 0.99.

One trivial strategy is to send 100 characters. But this is far from efficient because there
is only 1 blank symbol. Here is a better scheme. Let us send the information in the paper
as blocks of length 10 characters each. For each block of size 10, if there is a non-blank
symbol, we send the block as it, adding a 1 on the left (as a delimiter). Otherwise, we send
it across as a single 0.

Viewing the paper to be sent, as a random source of characters, the expected size of the
block can be calculated as follows. 1.P r[ Block is all-zero ] + 11.P r[ Block is no all-zero] =
11− (10 ∗ (0.99)10) = 2 bits !

Further, if we us fix the size of the paper to be 100 characters. Since only one of the blocks
will be sent as it is, and all the others will be just one bit. So the total length of the message
that will be sent is really 9 + 11 = 20bits (assuming each character is encoded using only
one bit).

One intuition that the above example is giving us that we want to send the high probability
event with a lower length sequence to reach optimality. But what is really the optimal
one? Shannon asked and answered this question in the Noisless coding theorem which we
will only state. To answer the question, he associated a non-negative real number which
captures the structural information about the object in a more precise way. This became
backbone of the theory he developed. This was the notion of entropy of a source which
measures the amount of randomness in the object to be sent across.

A simple example first, suppose that the number of 0s and 1s (blanks and non-blanks) in
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the page was exactly 50 each. In this case out strategy of encoding the higher probability
event spending lower number of bits does not imply an improvement. Shannon formalised
this intuition using the notion of entropy.

Let X be a 0-1 random variable that takes value 1 with a probability p and 0 with probability
1 − p. The entry number given in this case is : H(p) = p log 1

p + (1 − p)1
p . One can verify

that this function (plot it !) achieves the maximum when p = 1
2 ; and matches the above

intuition.

Let D : U → {0, 1} be a probability distribution on the domain U . Let X be a random
variable with distribution D. The entropy of the distribution is:

H(D) =
∑
x∈U

D(x) log

(
1

D(x)

)
.

Now we are ready to state the noiseless coding theorem due to Shannon which states the
existence of the best ”compression” that we can achieve.

Theorem 1 (Noiseless Coding Theorem). For a finite set U , for every distribution D :
U → [0, 1], there exist functions Enc : U → {0, 1}∗ and Enc : {0, 1}∗ → U such that : ∀ x :
Dec(Enc(x)) = x and,

H(D) ≤ Ex∈DU |Enc(x)| ≤ H(D + 1)

Moreover, no other pair of functions that achieves the first condition can achieve the second
condition.

We will not be doing the proof here since it is beyond the scope of this lecture and in general
the aim of the course. The upper bound follows roughly the intuition that we stated while
describing the example of the sparse message on paper. The main idea is to use lower
number of bits to encode symbols with high probability (that are too frequent). In essence,
we will round down each probability value to the 2−i values and then use i bits to encode
them. Just to do a sanity check here; why can we even hope to assign unique strings to
each rounded message (remember, this is a requirement if we need Dec to be a function).
There cannot be more than 2i message symbols which gets rounded to 2−i since the total
probability will add up to more than 1.

The argument then estimates precisely he non-optimality that we have incurred by the
rounding process and proves that expected length of the encoding is at most H(D) + 1.
The lower bound is more involved and we will skip completely. The reference for reading it
up is the text-book by Cover and Thomas.
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2 Noisy Channel

The channel is not harmless in the real world. It introduces errors in the transmission.
Depending on the application the error may be in the physical storage media (communi-
cation over time) or in the physical channel (communication over space). Some of the 0s
gets flipped to 1s and vice versa, and some bits may get dropped too. For the purposes of
this course we will study only model (Shannon studied several interesting variants), namely
what are called Binary Symmetric Channels. In this model, each bit gets flipped with a
probability p. That is, a 1 gets flipped to a 0 with probability and 0 gets flipped to 1 with
probability p.

What is the natural strategy to cope up with errors in transmission? Create redundancy.
For example, if Alice wants to send a bit 0 to Bob, she will do it five times, and send 11111
and ask Bob to take the majority of the bits as the bit that was sent. In this simple looking
example we have all the essence. The string that was sent will be called the codeword and
the original bit to be sent is called the message. There are only two codewords 00000 and
11111 in the above example. If we define the notion of distance as the hamming distance,
then the majority decoding mechanism described above can also be seen as choosing the
codeword that is closest to the received word. This natural strategy of decoding is called
nearest neighbor decoding or maximum likelyhood decoding.

Now let us observe facts about guarantees. Clearly if the channel is such that it will not
corrupt more than 2 bits in a sequence of 5 bits, then Bob will be able to decode the message
bit correctly. But the channel may actually flip more number of bits but with relatively
lower probability. Thus if we increase the number of copies we make of the original message,
with high probability (over the errors) introduced by the channel we are going to be able
to decode the bit correctly.

To fix some notations, we denote E : {0, 1}k → {0, 1}n as the encoding function where k
is the message length (in general) and n is the length of the codeword (which we will call
the block length. Let m ∈ {0, 1}k be a message, and E(m) ∈ {0, 1}n is the transmitted
word. The channel corrupts the message and let y ∈ {0, 1}n is the received word. The error
introduced by the channel could also be thought of as a string η ∈ {0, 1}n where the ηi
determines whether yi = (E(m))i or not.

We want the following guarantee for any m ∈ {0, 1}k as translating the above intuition:

Prη(D(E(m) + η) = m) ≥ 1− o(1)

where the o(1) term is exponentially small depending on n and hence on k (since c is a
constant). To relax even further we want the guarantee,

Prm∈{0,1}nPrη(D(E(m) + η) = m) ≥ 1− o(1)
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Shannons theorem essentially states that there is a pair of encoding-decoding functions that
can achieve this high confidence decoding of the original message. Now we are ready to
state the theorem formally.

Theorem 2 (Noisy Coding Theorem). For every 0 ≤ p < 1
2 , and c > 1

1−H(p) , there exists

δ > 0 such that for large enough n, there exists an encoding function E : {0, 1}k → {0, 1}n
and a decoding function D : {0, 1}n → {0, 1}k, for n = ck, such that for every m ∈ {0, 1}k,

Prη (D(E(m) + η) = m) ≥ 1− 1

2δn
(1)

where η is the error bit-vector introduced by the channel. Moreover, if c ≤ 1
1−H(p)+ε , then

the decoding error probability will be close to 1 for large n and k.

Proof. We need some notations first. For x, y ∈ Σ∗, ∆(x, y) is the set of indices in which
the symbol differs in the two strings x and y. We also need the notion of a Hamming Ball
in the space of {0, 1}n around a string y ∈ {0, 1}n of radius r ∈ N.

For the first part, we prove a relaxed version. That is we show equation 1 holds over a
random choice of m ∈ {0, 1}n with high probability. We will then outline how to prove
equation 1 for all m.

We need to show the existence of an encoding and decoding algorithm which achieves the
error bound. Notice that we are not worried about computation of these functions, but
only existence In fact we prove a stronger theorem. We show that there exists an encoding
function even for a fixed decoding function that we choose. . The decoding function we fix
is the nearest neighbor decoding described with the above example. To formally state this,
the function D : {0, 1}n → {0, 1}k works as follows: given a string y ∈ {0, 1}n, the decoded
string D(y) is m ∈ {0, 1}k such that ∆(y,E(m)) is minimised.

With this D, now we will argue that over a randomly chosen encoding function, we can
satisfy the equation 1, with probability greater than 0. This will then show that there exists
an encoding function such that equation 1 is satisfied.

To execute the plan, we first describe the random process of choosing E. For every m ∈
{0, 1}k, choose a string E(m) uniformly at random from the set {0, 1}n. (Notice that this
may not give us a injective map sometimes, but that will get estimated in the decoding
error probability finally.)

Let us analyse the event D(E(m) + η) 6= m. We also keep in mind the property that the
number of bits that gets flipped is pn on the average. By applying Chernoff Bound, we see

that it is between pn+ ε and pn− ε with probability less than e−
ε2n
2 . In particular,

Prη(∆(E(m), y) ≥ pn+ ε) ≤ e−
ε2n
2

B01-B02-5



Prη(D(E(m) + η) 6= m) =
∑

y∈{0,1}n : D(y)6=m

Prη(E(m) + η = y)

=
∑

{
y:

∆(E(m), y) ≤ np + ε
D(y) 6= m

}Prη(E(m) + η = y) +
∑

{
y:

∆(E(m), y) > np + ε
D(y) 6= m

}Prη(E(m) + η = y)

≤
∑

{
y:

∆(E(m), y) ≤ np + ε
D(y) 6= m

}Prη(E(m) + η = y) +
∑

{y: ∆(E(m), y) > np + ε }

Prη(E(m) + η = y)

≤
∑

{
y:

∆(E(m), y) ≤ np + ε
D(y) 6= m

}Prη(E(m) + η = y) + e−
ε2n
2

The first term is summing over those strings y such that the decoded message is not m. By
our decoding algorithm this can happen only if another message m′ has its encoding E(m′)
closer to y than E(m). But for this, E(m′) has to be within a ball of radius np+ ε with y as
the center. Counting the number of strings in the ball gives us a handle on the probability.

To do this let us define volume first. For y ∈ {0, 1}n, r ∈ n, the volume, Vol(y, r) as the
volume of the ball centred at y of radius r, that is the number of strings within a distance
of r fromy. This is precisely,

∑i=r
i=0

(
n
i

)
. But due to the symmetry in{0, 1}n this number is

the same for any y. Hence we will denote it as Vol(n, r) =
∑i=r

i=0

(
n
i

)
.

We will also estimate the volume in our case by the following lemma.

Lemma 3. For p < 1
2 , Vol(p, n) ≤ 2n.H(p)
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Proof. H(p) = p log 1
p + (1− p) log 1

1−p . Hence we have, 2−H(p).n = pnp(1− p)np.

1 = (p+ (1− p))n

≥
i=pn∑
i=0

(
n

i

)
pi(1− p)n−i

=

i=pn∑
i=0

(
n

i

)(
p

1− p

)i
(1− p)n

≥
i=pn∑
i=0

(
n

i

)(
p

1− p

)pn
(1− p)n

=

i=pn∑
i=0

(
n

i

)
ppn(1− p)(1−p)n

=

i=pn∑
i=0

(
n

i

)
2−n.H(p)

Now we use this bound to complete our estimation of decoding error probability.∑
y:∆(E(m),y)≤np+ε,D(y)6=m

Prη(E(m) + η = y) ≤ Prη(∃m′ : ∆(E(m′), y) ≤ np+ ε) (2)

= (2k − 1)
Vol(y, np+ ε)

2n
(3)

≤ 2k
2−n.H(p)

2n
(4)

≤ 2k−(1−H(p))n (5)

We want to choose a c such that this error probability is less than 1, and hence our randomly
chosen E will work correctly with non-zero probability. A choice of n such that k >
(1−H(p))n will work here. That is, k

n = 1
c < 1−H(p).

The above analysis was for a fixed m and E(m). The analysis works for a random m too.

Hence, there is a δ such that 2−δn = 2−
ε2n
2 + 2k+(1−H(p))n such that,

Eη,m,E(D(E(m) + η 6= m) ≤ 2−δn

Hence there exists E such that,

Prη,m(D(E(m) + η 6= m) ≤ 2−δn (6)

That completes the proof of the relaxed case.
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Remark 4. We remark about the strengthening of the argument to the case of all m in the
domain. We want equation 6 to hold for every m. Taking union bound will introduce a
factor of 2k in our error proability and makes our c larger. But here is a better way: we
know that there is an E that works well on the average. We will tinker with E to get an E′

that works well for all m. Sort the messages in the increasing order of their decoding error
probabilities. The message a which appears in the middle ((2k−1)th message has decoding
error probability at most 2−δn+1 (otherwise it contradicts equation 6). Since the list is sorted
all messages below a have at most 2−δn+1 decoding error probability. We just discard the
top 2k−1 messages (these had higher decoding error probability) from the domain and work
with the smaller domain (call it Rk). We have |Rk| = 2k−11 How do we describe the function
E′ in terms of E? We know that |Rk| = 2k−1. Let fk be a bijection from {0, 1}k−1 → Rk.
Now E′(m) = E(fk+1(m)). Similarly the decoding function is D′(y) = f−1

k+1(D(y)). Note
that the bijection does not introduce error and is a part of the encoding and the decoding
functions. Hence there exists encoding and decoding functions such that for all messages
the decoding error probability is exponentially small.

Capacity of the channel: Given that we wanted to optimize the redundancy that we
create in our example, which translates to optimizing the value of c, a natural question
that arises out of the above discussion is if c that we chose was optimal. The fact that
1
c > 1 − H(p) arose out of the analysis that we had for the probabilities. For sending
information across how much is the capacity that we have. Is this really just that this c
works? or is there a better c that can work?

Shannon asked this question and argued that the choice is c is optimal. This is the second
part of the theorem that we stated.

The parameter is also a property of the channel, can also be thought of as the limiting
value k

n . Or rather, the limiting value of how many bits of messages do we communicate by
sending one bit of the codeword.

Optimality: We will not formally prove the second part of the theorem in the course,
but gave an intuitive argument related to it.

Alice and Bob has a noiseless channel available to them. Two unknown thieves A and B
hijacked the channel. Their plan is to send information across using the error part in the
coding scheme. They have an object to send (say the content of the piece of paper) which is
a probability distribution with probability p that each bit is 1 is 1. They inform Alice abd
Bob that the cross-over probability of the binary symmetric channel is p and hence with
entropy H(p) (normalized to per bit).

Alice and Bob, believing the false information designed and agreed on a coding scheme

1This repair work will affect the value of k that we need to choose to send our information. It also affects
the rate n

k
at which we are sending the messages but at most additively by 1

n
which is less than ε for large

enough n.
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which will have some decoding guarantees with respect to the binary symmetric channel
presented to them.

The process goes on likes this: A wishes to send out a message η (we used the same
notation as the error bit vector). When alice sends out her message m as the encoded
codeword E(m), since A hijacked the channel he gets it and adds the bit-vector η to the
message to get E(m) + η. Since the channel is actually noiseless, this is the only “error”
and the message y = E(m) + η is what we will receive at the other end. B who receives
the message passes it on to Bob. Bob will decode the message and retrieve m (with high
probability). B will also do the same to get m and then find out E(m). The message η
that B was supposed to get can be recovered by y − E(m) = (E(m) + η)− E(m) = η.

The rate of the noiseless channel expressed as the limit of 1−H(p) as p → 0, is 1. Let us
calculate the rate at which information is sent out by the parties. For every bit that sent
out from one side to another - alice can send 1

c = k
n bits of her message and A can send

atmost 1
H(p) bits of his message.
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