
ITCS:CCT09 : Computational Complexity Theory May 26, 2009

Problem Set # 2

Topic: Lectures 9-$ Due on: Jun 10, 2009

Problem 1

(Slice Functions)

A function is called a slice function if for some positive integer k,

f(x) =

{

1 if x contains more than k 1’s
0 if x contains less than k 1’s

and there are no restrictions when the number of 1s is exactly k.

1. Notice that slice functions are monotone. Show that a general circuit computing a slice
function can be converted into a monotone circuit at the expense of only a polynomial blow
up in the size of the circuit.

2. Consider the following problem : Given a graph G with 2n vertices, test which of the following
is true (1) G has a clique of size n or (2) G has at least ⌈n(2n−1)

2 ⌉+1 edges. This can be shown1

to be NP-coomplete. Define a sequence of slice functions which represents this NP-complete
problem.

Problem 2

(Super-linear Circuit Lower Bounds)

As we saw in the class, it is unknown (and is unlikely because it implies a collapse of the PH)
whether NP has polynomial sized circuits. That whether or not NP ⊆ P/poly. On the lower bounds
front, in fact, it is unknown whether there is an explicit function in NP that does not have O(n)
sized circuits. In this exercise, we will show something weaker.

• Show that there is a function in the PH which does not have O(n) sized circuits. (Hint: how
does one describe a boolean function which can be computed by a circuit of size k, but cannot
be computed by any circuit of size k′ where k′ < k? think of k as O(n2) and k′ as O(n).)

• Improve this to show that there is a function in Σp
2 ∩ Πp

2 which does not have O(n) sized
circuits.

1You need not prove it in your solutions.

2-1

Problem 3

(Structural results about randomization)

Here we will show some basic structural results about the randomized classes, which we skipped in
class.

1. Recall the definition of ZPP as the languages accepted by randomized Turing machines (that
runs in expected polynomial time) which never makes an error (in terms of acceptance), but
it can answer “I dont know”. Show that ZPP = RP ∩ coRP.

2. A class A is said to be low for a class B if it is true that AB = A. Show that BPP is low for
itself.

3. Consider a randomized logspace machine M . Show that we can compute in polynomial time
the probability that the machine reaches the accepting configuration (Use matrix multplica-
tion !). Thus show that BPL ⊆ P.

Problem 4

(Query Length and Randomness)

A polynomial-time oracle DTM is called a log-query machine if for any input x of length and for
any oracle A, it makes at most c log n queries, where c is a constant. Let ΘP

2 denote the class of
sets computable by polynomial-time log-query oracle machines with an oracle in NP. Prove that
ΘP

2 ⊆ PP.

Problem 5

(Can it be the case that 3SAT ≤r 3SAT)?

A non-deterministic circuit has two inputs x and y (size measured in terms of |x|). We say that
it accepts a string x if and only if there exists a y such that C(x, y) = 1. Let NP/poly be the
languages that are decided by polynomial sized non-deterministic circuits.

1. We defined the BP operator in class. Show that BP.NP ⊆ NP/poly.

2. Show that if 3SAT ∈ BP.NP then PH collapses to Σp
3 (Use ideas similar to Karp-Lipton

theorem that we already saw). Thus conclude that it is unlikely that 3SAT ≤r 3SAT.

2-2

