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1 Introduction

In this lecture, we continue to present several results on circuit lowerbound. The first one
is to prove the switching lemma and show the circuit lowerbound of PARITY function.
Then we show the circuit lowerbound of PARITY implies that PARITY /∈ AC0. Before
presenting these theorems, we introduce several definitions that are necessary in the proofs:

Definition 1 A restriction on a domain of n variables is a map ρ : I → {0, 1, ∗} such that
I = {xi|1 ≤ i ≤ n}. Suppose that f is a boolean function with n variables x1, . . . , xn. Then
f under restriction ρ is defined as f |ρ, which is the result of substituting ρ(xi) for every
variable xi in f such that ρ(xi) 6= ∗. We say that all variables xi such that ρ(xi) 6= ∗ are
free, since they are not assigned to any value.

Definition 2 Define Rl
n to be the set of all restrictions ρ on a domain of n variables that

leave exactly l variables free , that is, other n − l variables are assigned to either 0 or 1.

Definition 3 Consider a DNF formula F = C1 ∨ . . . Ck, and its terms are ordered lexico-
graphically. The decision tree for F , T (F ) is defined inductively as the following:

1. If F is the constant function 0 or 1, then T (F ) is just a single leaf node with corresponding
value 0 or 1.

2. If the first term C1 of F is not empty, then let F ′ be the remainder of F so that
F = C1 ∨ F ′. Let K be the set of variables appearing in C1. The tree T (F ) starts with
a complete binary tree for K such that at the i’th level we query the i’th variable of K,
and proceed left if it is 1 and right if it is 1. Each leaf vρ in the tree is associated with a
restriction ρ which sets the variables of K according to the path from the root to vρ. For
each ρ we replace the leaf node, vρ, by the subtree T (F |ρ). (Note that for the unique ρ which
satisfies C1 the leaf vρ will remain a leaf and be labeled 1. For all other choices of ρ, the
tree that replaces vρ is T (F |ρ) = T (F ′|ρ).
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2 The circuit lowerbound of PARITY

Theorem 4 Any boolean circuits of depth d computing PARITY must have size S ≥

2
n1/(d−1)

14 .

The proof of this theorem is based on the following lemma, which will be proved in the next
section.

Switching Lemma: Let F = C1 ∨ C2 ∨ · · · ∨ Ck be a DNF with terms of
size ≤ r. Let l = ǫn, for 0 < ǫ ≤ 1

7 . Pick ρ ∈ Rl
n at random, then

Pr[F |ρ does not have a decision tree of height ≤ h] < (7ǫr)h.

Claim 5 Let C be an AND/OR circuit of depth d and size S. Let h be given and define
nd = n

14(14h)d−1 . Choose ρ ∈ Rnd
n at random, then with probability 1 − S2−d every function

computed at every gate of C has a decision tree of depth at most h after using ρ.

Proof First, ρ is chosen at random in an alternative way. Define ni+1 = n
14(14h)i for

0 ≤ i ≤ n − 1 and n0 = n. Then choose ρ by choosing ρ1ρ2 . . . ρd, where ρi ∈ Rni
ni−1

for
1 ≤ i ≤ n − 1.

We show that for each gate the probability that the corresponding decision tree has depth
greater than h, given that its input gates have decision trees of depth at most h, is less than
2−h, and the statement then follows by summing over all gates.

For a given gate, we proof it by the induction on the depth of the gate. As the base case,
consider an OR gate at level 1. This can be viewed as a DNF with terms of size 1, meaning
that we can apply the switching lemma. Thus, when picking a restriction ρ1 ∈ Rn1

n0
at

random, we get that:

Pr[Fρ1 does not have a decision tree of depth at most h] < (7 ·
1

14
· 1)h = 2−h

In the case of AND gate at level 1, the similar result can be got from the decision tree of
the negation.

For the induction step, all gates at levels 1 to i have decision trees of depth ≤ h after using
ρ1 . . . ρi.

Consider an OR gate at level i + 1. Its inputs have decision trees of depth ≤ h, which can
be rewritten to DNF’s with terms of size ≤ h. Since each root-to-leaf path in the decision
trees can be expressed as a term of DNF with at most h variables. Now the OR gate at
level i+1 has only OR gates as inputs. If all OR gate are collapsed into one OR gate, then
the circuit turns into a DNF with terms of size at most h (see Figure 1).

11&12-2



Figure 1: Collapse all OR gates into one.

If picking ρi+1 ∈ R
ni+1
ni at random, by switching lemma, we have: ǫ = ni+1

ni
= 1

14h

Thus,

Pr[Fρ1...ρi+1 does not have a decision tree of depth at most h] < (7 ·
1

14h
· h)h = 2−h

Similar results can be achieve for the AND gate by negating the expression.

Proof (Proof for Theorem 4) Given a circuit C of depth d and size S computing PARITY.
Let h = log S. Assume that the topmost gate is an OR gate. According to the proof of
Claim 5, there exists a ρ ∈ R

nh−1
n such that the input gates of the topmost OR gate have

decision trees of depth at most h after applying ρ. Then the circuit after applying ρ can be
expressed as a DNF formula F with terms of size at most h.

However, for a PARITY function of nd−1 variables, its DNF formula F requires terms of
size nd−1. Since if one of the term has less than nd−1 variables, then the variable can be
set to either 0 or 1 when finding a restriction that satisfies this term, which cannot be the
case. Therefore, it should have

h ≥ nd−1 =
n

14(14h)d−2

⇒ (14h)d−1 ≥ n

⇒ h ≥
1

14
n

1
d−1

⇒ S ≥ 2
n

1
d−1

14
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Claim 6 PARITY /∈ AC0

Proof By the proof of Theorem 4, a circuit computing PARITY for n input variables

and of constant height d requires size S ≥ 2
n

1
d−1

14 = 2Ω(n), and is not polynomial in size.
Therefore, PARITY /∈ AC0.

3 Switching Lemma

Definition 7 Define Starsk(r, h) to be the set of k sequences (β1, . . . , βk) such that for
every j, βj ∈ {∗,−}r\{−}r and the total number of *’s over all the βj’s is h.

Lemma 8 |Starsk(r, h)| < ( r
ln2)h

Proof Define α by (1+ 1
α)r = 2. Then ln (1 + 1/α) = ln 2

r . By using 1+x < ex for x 6= 0,
we get

ln 2

r
= ln (1 + 1/α) < ln(e1/α) =

1

α
Thus,

α <
r

ln 2

We use induction on h to prove that |Starsk(r, h)| < αh. In the base case, it is trivial that
|Starsk(r, 0)| < α0. For the induction part, assume that for all h < k, the inequality holds.
Consider that β1 has i *’s. Then the number of possible values for β1 is

(

i
r

)

. We then get:

|Starsk(r, h)| =

min(r,h)
∑

i=1

(

i

r

)

Starsk−1(r, h − i)

≤

min(r,h)
∑

i=1

(

i

r

)

Starsk(r, h − i)

<
r

∑

i=1

(

i

r

)

αh−i

= αh
r

∑

i=1

(

i

r

)

(1/α)i

= αh[(1 + 1/α)r − 1]

= αh
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Lemma 9 (Switching Lemma) Let F = C1 ∨ C2 ∨ · · · ∨ Ck be a DNF with terms
of size ≤ r. Let l = ǫn, for 0 < ǫ ≤ 1

7 . Pick ρ ∈ Rl
n at random, then

Pr[F |ρ does not have a decision tree of height ≤ h] < (7ǫr)h.

Proof Let S be the set of restriction in Rl
n such that for ρ ∈ S, F |ρ doesn’t have a

decision tree of height h. Since The probability we want to bound equals to |S|/|Rl
n|, we

first obtain a bound on |S| by defining a 1-1 map from S to a small set.

We will define a 1-1 map S → H, where H = Rl−h
n × Starsk(r, h) × {0, 1}h. Given some

ρ ∈ S, and let π be the restriction corresponding to the first h variables of lexicographically
first path in T (F |ρ) that has length ≥ h. We use the formula F and π to determine the
image of ρ.

Let Cv1 be the first term of F that is not set to 0 by ρ, that is the first term of F |ρ. And
let π1 be the part of π in Cv1 . Also, let σ1 be the unique restriction satisfying Cv1 on the
variables of π1. For i > 1 let Cvi be the first term of F |ρπ1...πi−1 , and let πi be the part of
π in Cvi . Also, let σi be the unique restriction satisfying Cvi on the variables of πi. Note
that πi may not restrict every variable of Cvi , since π has only restricted h variables and
the height of T (F |ρ) may be higher than h. Thus, we have π1π2 . . . πk = π. The relation
between these notions and T (F |ρ) is shown in Figure 2.

Before defining the 1-1 map S → H, some notations should be defined. For every i =
1, . . . , k, let the j’th component of βi be ∗ if and only if the j’th variable in Cvi is set by σi.
Also, define δ ∈ {0, 1}h to be the bit-string for which the i’th bit is 1 if and only if π and
σ1 . . . σk agree on the i’th variable. By the above notions, we get the 1-1 map such that for
every ρ ∈ S, ρ 7→ (ρσ1 . . . σk, (β1, . . . , βk), δ). Note that ρσ1 . . . σk ∈ Rl−h

n .

We have to argue the mapping from H to S that recovers ρ from ρσ1 . . . σk, (β1, . . . , βk), δ
. The reconstruction is iterative. Suppose that we have recovered π, . . . , πi−1, σ1, . . . , σi−1,
and ρπ1 . . . πi−1σi . . . σk. Notice that for i < k, Cvi |ρπ1 . . . πi−1σi = 1 and
Cj |ρπ1 . . . πi−1σi = 0 for all j < vi. Thus we can recover vi as the index of the first
term of F that is not set to 0 by ρπ1 . . . πi−1σi . . . σk.

Now, using Cvi and βi, we know those variables in Cvi that are only set by σi. Hence we
get σi. Then by using δ and σi, we can imply πi. We repeat the whole procedure until we
find π1, . . . , πk and σ1, . . . , σk. Then we can easily reconstruct ρ by removing the restriction
of π1, . . . , πk from ρπ1 . . . πk.

With this mapping, we have shown that |S| < |H|, and |H| ≤ |Rl−h
n | · |Starsk(r, h)| · 2h.

Therefore,
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Figure 2: Decision Tree T (F |ρ)

|S|

Rl
n

≤
|Rl−h

n |

Rl
n

· |Starsk(r, h)| · 2h

≤
|Rl−h

n |

Rl
n

· (
2r

ln 2
)h

≤

(

n
l−h

)

2n−l+h

(

n
l

)

2n−l
· (

2r

ln 2
)d

≤
lh

(n − l)h
· (

4r

ln 2
)h

= (
4 l

nr

(1 − l
n) ln 2

)h

=
4ǫr

(1 − ǫ) ln 2
)h ≤ (

4ǫr
6
7 ln 2

)h < (7ǫr)h
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