1 Introduction

In this lecture, we continue to present several results on circuit lowerbound. The first one is to prove the switching lemma and show the circuit lowerbound of PARITY function. Then we show the circuit lowerbound of PARITY implies that PARITY $\notin A C_{0}$. Before presenting these theorems, we introduce several definitions that are necessary in the proofs:

Definition $1 A$ restriction on a domain of n variables is a map $\rho: I \rightarrow\{0,1, *\}$ such that $I=\left\{x_{i} \mid 1 \leq i \leq n\right\}$. Suppose that f is a boolean function with n variables x_{1}, \ldots, x_{n}. Then f under restriction ρ is defined as $\left.f\right|_{\rho}$, which is the result of substituting $\rho\left(x_{i}\right)$ for every variable x_{i} in f such that $\rho\left(x_{i}\right) \neq *$. We say that all variables x_{i} such that $\rho\left(x_{i}\right) \neq *$ are free, since they are not assigned to any value.

Definition 2 Define \mathcal{R}_{n}^{l} to be the set of all restrictions ρ on a domain of n variables that leave exactly l variables free, that is, other $n-l$ variables are assigned to either 0 or 1 .

Definition 3 Consider a DNF formula $F=C_{1} \vee \ldots C_{k}$, and its terms are ordered lexicographically. The decision tree for $F, T(F)$ is defined inductively as the following:

1. If F is the constant function 0 or 1 , then $T(F)$ is just a single leaf node with corresponding value 0 or 1 .
2. If the first term C_{1} of F is not empty, then let F^{\prime} be the remainder of F so that $F=C_{1} \vee F^{\prime}$. Let K be the set of variables appearing in C_{1}. The tree $T(F)$ starts with a complete binary tree for K such that at the i 'th level we query the i 'th variable of K, and proceed left if it is 1 and right if it is 1 . Each leaf v_{ρ} in the tree is associated with a restriction ρ which sets the variables of K according to the path from the root to v_{ρ}. For each ρ we replace the leaf node, v_{ρ}, by the subtree $T\left(\left.F\right|_{\rho}\right.$). (Note that for the unique ρ which satisfies C_{1} the leaf v_{ρ} will remain a leaf and be labeled 1. For all other choices of ρ, the tree that replaces v_{ρ} is $T\left(\left.F\right|_{\rho}\right)=T\left(\left.F^{\prime}\right|_{\rho}\right)$.

2 The circuit lowerbound of PARITY

Theorem 4 Any boolean circuits of depth d computing PARITY must have size $S \geq$ $2^{\frac{n^{1 /(d-1)}}{14}}$.

The proof of this theorem is based on the following lemma, which will be proved in the next section.

Switching Lemma: Let $F=C_{1} \vee C_{2} \vee \cdots \vee C_{k}$ be a DNF with terms of size $\leq r$. Let $l=\epsilon n$, for $0<\epsilon \leq \frac{1}{7}$. Pick $\rho \in R_{n}^{l}$ at random, then $\operatorname{Pr}\left[\left.F\right|_{\rho}\right.$ does not have a decision tree of height $\left.\leq h\right]<(7 \epsilon r)^{h}$.

Claim 5 Let C be an $A N D / O R$ circuit of depth d and size S. Let h be given and define $n_{d}=\frac{n}{14(14 h)^{d-1}}$. Choose $\rho \in R_{n}^{n_{d}}$ at random, then with probability $1-S 2^{-d}$ every function computed at every gate of C has a decision tree of depth at most h after using ρ.

Proof First, ρ is chosen at random in an alternative way. Define $n_{i+1}=\frac{n}{14(14 h)^{i}}$ for $0 \leq i \leq n-1$ and $n_{0}=n$. Then choose ρ by choosing $\rho_{1} \rho_{2} \ldots \rho_{d}$, where $\rho_{i} \in R_{n_{i-1}}^{n_{i}}$ for $1 \leq i \leq n-1$.

We show that for each gate the probability that the corresponding decision tree has depth greater than h, given that its input gates have decision trees of depth at most h, is less than 2^{-h}, and the statement then follows by summing over all gates.

For a given gate, we proof it by the induction on the depth of the gate. As the base case, consider an OR gate at level 1 . This can be viewed as a DNF with terms of size 1 , meaning that we can apply the switching lemma. Thus, when picking a restriction $\rho_{1} \in R_{n_{0}}^{n_{1}}$ at random, we get that:

$$
\operatorname{Pr}\left[F_{\rho_{1}} \text { does not have a decision tree of depth at most } h\right]<\left(7 \cdot \frac{1}{14} \cdot 1\right)^{h}=2^{-h}
$$

In the case of AND gate at level 1, the similar result can be got from the decision tree of the negation.

For the induction step, all gates at levels 1 to i have decision trees of depth $\leq h$ after using $\rho_{1} \ldots \rho_{i}$.

Consider an OR gate at level $i+1$. Its inputs have decision trees of depth $\leq h$, which can be rewritten to DNF's with terms of size $\leq h$. Since each root-to-leaf path in the decision trees can be expressed as a term of DNF with at most h variables. Now the OR gate at level $i+1$ has only OR gates as inputs. If all OR gate are collapsed into one OR gate, then the circuit turns into a DNF with terms of size at most h (see Figure 1).

Figure 1: Collapse all OR gates into one.

If picking $\rho_{i+1} \in R_{n_{i}}^{n_{i+1}}$ at random, by switching lemma, we have: $\epsilon=\frac{n_{i+1}}{n_{i}}=\frac{1}{14 h}$
Thus,
$\operatorname{Pr}\left[F_{\rho_{1} \ldots \rho_{i+1}}\right.$ does not have a decision tree of depth at most $\left.h\right]<\left(7 \cdot \frac{1}{14 h} \cdot h\right)^{h}=2^{-h}$

Similar results can be achieve for the AND gate by negating the expression.

Proof (Proof for Theorem 4) Given a circuit C of depth d and size S computing PARITY. Let $h=\log S$. Assume that the topmost gate is an OR gate. According to the proof of Claim 5, there exists a $\rho \in R_{n}^{n_{h-1}}$ such that the input gates of the topmost OR gate have decision trees of depth at most h after applying ρ. Then the circuit after applying ρ can be expressed as a DNF formula F with terms of size at most h.

However, for a PARITY function of n_{d-1} variables, its DNF formula F requires terms of size n_{d-1}. Since if one of the term has less than n_{d-1} variables, then the variable can be set to either 0 or 1 when finding a restriction that satisfies this term, which cannot be the case. Therefore, it should have

$$
\begin{aligned}
& h \geq n_{d-1}=\frac{n}{14(14 h)^{d-2}} \\
\Rightarrow & (14 h)^{d-1} \geq n \\
\Rightarrow & h \geq \frac{1}{14} n^{\frac{1}{d-1}} \\
\Rightarrow & S \geq 2^{\frac{n}{\frac{1}{d-1}}} 1
\end{aligned}
$$

Claim 6 PARITY $\notin A C^{0}$

Proof By the proof of Theorem 4, a circuit computing PARITY for n input variables and of constant height d requires size $S \geq 2^{\frac{n^{\frac{1}{d-1}}}{14}}=2^{\Omega(n)}$, and is not polynomial in size. Therefore, PARITY $\notin A C^{0}$.

3 Switching Lemma

Definition 7 Define $\operatorname{Stars}_{k}(r, h)$ to be the set of k sequences $\left(\beta_{1}, \ldots, \beta_{k}\right)$ such that for every $j, \beta_{j} \in\{*,-\}^{r} \backslash\{-\}^{r}$ and the total number of *'s over all the β_{j} 's is h.

Lemma $8\left|\operatorname{Stars}_{k}(r, h)\right|<\left(\frac{r}{\ln 2}\right)^{h}$
Proof Define α by $\left(1+\frac{1}{\alpha}\right)^{r}=2$. Then $\ln (1+1 / \alpha)=\frac{\ln 2}{r}$. By using $1+x<e^{x}$ for $x \neq 0$, we get

$$
\frac{\ln 2}{r}=\ln (1+1 / \alpha)<\ln \left(e^{1 / \alpha}\right)=\frac{1}{\alpha}
$$

Thus,

$$
\alpha<\frac{r}{\ln 2}
$$

We use induction on h to prove that $\left|\operatorname{Stars}_{k}(r, h)\right|<\alpha^{h}$. In the base case, it is trivial that $\left|\operatorname{Stars}_{k}(r, 0)\right|<\alpha^{0}$. For the induction part, assume that for all $h<k$, the inequality holds. Consider that β_{1} has i^{*} 's. Then the number of possible values for β_{1} is $\binom{i}{r}$. We then get:

$$
\begin{aligned}
\left|\operatorname{Stars}_{k}(r, h)\right| & =\sum_{i=1}^{\min (r, h)}\binom{i}{r} \operatorname{Stars}_{k-1}(r, h-i) \\
& \leq \sum_{i=1}^{\min (r, h)}\binom{i}{r} \operatorname{Stars}_{k}(r, h-i) \\
& <\sum_{i=1}^{r}\binom{i}{r} \alpha^{h-i} \\
& =\alpha^{h} \sum_{i=1}^{r}\binom{i}{r}(1 / \alpha)^{i} \\
& =\alpha^{h}\left[(1+1 / \alpha)^{r}-1\right] \\
& =\alpha^{h}
\end{aligned}
$$

Lemma 9 (Switching Lemma) Let $F=C_{1} \vee C_{2} \vee \cdots \vee C_{k}$ be a DNF with terms of size $\leq r$. Let $l=\epsilon n$, for $0<\epsilon \leq \frac{1}{7}$. Pick $\rho \in R_{n}^{l}$ at random, then $\operatorname{Pr}\left[\left.F\right|_{\rho}\right.$ does not have a decision tree of height $\left.\leq h\right]<(7 \epsilon r)^{h}$.

Proof Let S be the set of restriction in R_{n}^{l} such that for $\rho \in S,\left.F\right|_{\rho}$ doesn't have a decision tree of height h . Since The probability we want to bound equals to $|S| /\left|R_{n}^{l}\right|$, we first obtain a bound on $|S|$ by defining a 1-1 map from S to a small set.

We will define a 1-1 map $S \rightarrow H$, where $H=R_{n}^{l-h} \times \operatorname{Stars}_{k}(r, h) \times\{0,1\}^{h}$. Given some $\rho \in S$, and let π be the restriction corresponding to the first h variables of lexicographically first path in $T\left(\left.F\right|_{\rho}\right)$ that has length $\geq h$. We use the formula F and π to determine the image of ρ.

Let $C_{v_{1}}$ be the first term of F that is not set to 0 by ρ, that is the first term of $\left.F\right|_{\rho}$. And let π_{1} be the part of π in $C_{v_{1}}$. Also, let σ_{1} be the unique restriction satisfying $C_{v_{1}}$ on the variables of π_{1}. For $i>1$ let $C_{v_{i}}$ be the first term of $\left.F\right|_{\rho \pi_{1} \ldots \pi_{i-1}}$, and let π_{i} be the part of π in $C_{v_{i}}$. Also, let σ_{i} be the unique restriction satisfying $C_{v_{i}}$ on the variables of π_{i}. Note that π_{i} may not restrict every variable of $C_{v_{i}}$, since π has only restricted h variables and the height of $T\left(\left.F\right|_{\rho}\right)$ may be higher than h. Thus, we have $\pi_{1} \pi_{2} \ldots \pi_{k}=\pi$. The relation between these notions and $T\left(\left.F\right|_{\rho}\right)$ is shown in Figure 2.
Before defining the 1-1 map $S \rightarrow H$, some notations should be defined. For every $i=$ $1, \ldots, k$, let the j 'th component of β_{i} be $*$ if and only if the j 'th variable in $C_{v_{i}}$ is set by σ_{i}. Also, define $\delta \in\{0,1\}^{h}$ to be the bit-string for which the i 'th bit is 1 if and only if π and $\sigma_{1} \ldots \sigma_{k}$ agree on the i 'th variable. By the above notions, we get the 1-1 map such that for every $\rho \in S, \rho \mapsto\left(\rho \sigma_{1} \ldots \sigma_{k},\left(\beta_{1}, \ldots, \beta_{k}\right), \delta\right)$. Note that $\rho \sigma_{1} \ldots \sigma_{k} \in R_{n}^{l-h}$.

We have to argue the mapping from H to S that recovers ρ from $\rho \sigma_{1} \ldots \sigma_{k},\left(\beta_{1}, \ldots, \beta_{k}\right), \delta$. The reconstruction is iterative. Suppose that we have recovered $\pi, \ldots, \pi_{i-1}, \sigma_{1}, \ldots, \sigma_{i-1}$, and $\rho \pi_{1} \ldots \pi_{i-1} \sigma_{i} \ldots \sigma k$. Notice that for $i<k, C_{v_{i}} \mid \rho \pi_{1} \ldots \pi_{i-1} \sigma_{i}=1$ and $C_{j} \mid \rho \pi_{1} \ldots \pi_{i-1} \sigma_{i}=0$ for all $j<v_{i}$. Thus we can recover v_{i} as the index of the first term of F that is not set to 0 by $\rho \pi_{1} \ldots \pi_{i-1} \sigma_{i} \ldots \sigma k$.

Now, using $C_{v_{i}}$ and β_{i}, we know those variables in $C_{v_{i}}$ that are only set by σ_{i}. Hence we get σ_{i}. Then by using δ and σ_{i}, we can imply π_{i}. We repeat the whole procedure until we find π_{1}, \ldots, π_{k} and $\sigma_{1}, \ldots, \sigma_{k}$. Then we can easily reconstruct ρ by removing the restriction of π_{1}, \ldots, π_{k} from $\rho \pi_{1} \ldots \pi_{k}$.

With this mapping, we have shown that $|S|<|H|$, and $|H| \leq\left|R_{n}^{l-h}\right| \cdot\left|\operatorname{Stars}_{k}(r, h)\right| \cdot 2^{h}$. Therefore,

Figure 2: Decision Tree $T\left(\left.F\right|_{\rho}\right)$

$$
\begin{aligned}
\frac{|S|}{R_{n}^{l}} & \leq \frac{\left|R_{n}^{l-h}\right|}{R_{n}^{l}} \cdot\left|\operatorname{Star}_{k}(r, h)\right| \cdot 2^{h} \\
& \leq \frac{\left|R_{n}^{l-h}\right|}{R_{n}^{l}} \cdot\left(\frac{2 r}{\ln 2}\right)^{h} \\
& \leq \frac{\left(\begin{array}{l}
n \\
l-h
\end{array} 2^{n-l+h}\right.}{\binom{n}{l} 2^{n-l}} \cdot\left(\frac{2 r}{\ln 2}\right)^{d} \\
& \leq \frac{l^{h}}{(n-l)^{h}} \cdot\left(\frac{4 r}{\ln 2}\right)^{h} \\
& =\left(\frac{4 \frac{l}{n} r}{\left(1-\frac{l}{n}\right) \ln 2}\right)^{h} \\
& \left.=\frac{4 \epsilon r}{(1-\epsilon) \ln 2}\right)^{h} \leq\left(\frac{4 \epsilon r}{\frac{6}{7} \ln 2}\right)^{h}<(7 \epsilon r)^{h}
\end{aligned}
$$

