
ITCS:CCT09 : Computational Complexity Theory Mar 16, 2009

Lecture 4

Lecturer: Jayalal Sarma M.N. Scribe: Kai Jin

We will see some more of structural complexity results in this lecture and then switch to
some basics of circuit complexity.

1 Oracle Turing Machines

We first define the notion of oracle computations which is classical in recursion theory and
was also used extensively in classical complexity theory. We described these in an informal
way in the last lecture, but we did not need the formal definition there.

Oracle model essneitally modelling the notion of comparison of problems. We will get back
to this aspect when we formally define the reductions in upcoming lectures.

Definition 1 (Oracle Turing Machines) A 2-tape deterministic oracle Turing machine
can be definied by nine components (Q, q0, q?, qY , qN , F, Σ, Γ, δ). The symbols Q, F , q0 and
Σ are interpreted exactly as in the case of usual DTMs. There are three special states:
query state q?, ’Yes’ state qY , ’No’ state qN , and a special query tape. δ is a transition from
(Q − F − {q?}) × Γ2 → Q × Γ2 × {L, R, S}2.

M is trying to decide x ∈ L with oracle access to L′. On input x, M can write a query string
y to the query tape, and move to query state. Oracle checks if y ∈ L′ and puts M in ’Yes’
state; otherwise puts M in ’No’ state, and continues the computation. When the resources
of the computation is referred to the resources used by the oracle to check the membership
in L′ are not counted. That is, the transition from the query state to the answer state
is counted as only one step of the computation. We denote the language accepted by the
machine as LL′

.

A nondeterministic oracle Turing machine is the same as the above definition for a DTM,
except that the machine M can make non-deterministic moves only at the non-query states.

The definition of the oracle Turing machines are general enough to be applied to various
complexity classes without any case specific variation. In particular, we can define relativised
complexity classes based on this definition.

4-1

Definition 2 For a complexity class C, and a language L,

CL =

{

L

∣

∣

∣

∣

∃ OTM M respecting resource bounds of C

such that L is accepted by ML.

}

Generalizing this further, for two complexity classes C1 and C2,

CC2

1
=

{

L

∣

∣

∣

∣

∃ OTM M respecting resource bounds of C1

such that L is accepted by ML where L ∈ C2.

}

Proposition 3 For any two complexity classes C1 and C2, C1
C2 = C1

C2.

Proof Suppose L ∈ C1
C2 , then ∃M ∈ C1, N ∈ C2, modify N to N ′ which output the

opposite answer of N , s.t. N ′ ∈ C2. Use N ′ to be the oracle, but after each query, we change

the state to the opposite one. L can be accept by MN ′

hence L ∈ C1
C2 . ∴ C1

C2 ⊆ C1
C2 .

The same proof gives the reverese inclusion too.

Following is another easy proposition:

Proposition 4 For any complexity classes C1, C2 and C3, if C1 ⊆ C2, then CC1

3
⊆ CC2

3
.

To understand the notion of oracle access let us try out an example, take C1 = NP and
C2 = P. Now, CC2

1
is NPP. Think of the NP machine M with oracle access to a language

L ∈ P. But then, it is clear that the machine does not need to actually query the oracle
machine, it can simulate the polynomial time algorithm for deciding the membership in L
within its own resource bounds. This demonstrates that NPP = NP. To take an example
in the other extreme, let C1 = P and C2 = PSPACE. Clearly PSPACE ⊆ PPSPACE (in fact
this is an equality). In this case the oracle really “helps” the computation.

Can one apply the same simulation methods as above to prove that NPNP ⊆ NP? Not
really. We discussed this informally. The details of this will be asked in the homeworks (!).
It is not known whether NPNP is same as NP or not. In fact it is not even clear if PNP can
be simulated by an NP machine. Using these as the base cases we can define a heirarchy of
complexity classes which contains NP, as the so-called polynomial heirarchy.

1.1 Polynomial Hierarchy

The class NPNP is denoted by Σp
2

(The name of this class will be justified by a charac-
terisation that we will see later). As we said in the previous section it is unclear whether

Σp
2
⊆ NP. The obvious simulation fails. One can further ask about NPΣ

p
2 , and this class

is called Σp
3

again seemingly more powerful than Σp
2

and NP. This leads to the following
definition.

4-2

Definition 5 (Σp
k & Πp

k) Let us set Σp
0

= Πp
0

= P. Now the classes are defined inductively.

For k ≥ 1, Σp
k = NPΠ

p

k−1, Πp
k = coNPΣ

p

k−1.

From the definition, Σp
1

= NPP, and as we saw this is same as NP. Similarly, Πp
1

= coNP.
In fact, from the definition itself the following relationship among these classes are easy to
derive.

Proposition 6

P =
Σ0

Π0

⊆
Σ1 = NP

Π1 = coNP
⊆

Σ2

Π2

⊆ · · · ⊆
Σk

Πk
⊆ · · · ⊆ · · ·

Thus there is an infinite series of complexity classes which contains P and NP in the base
case. This heirarchy defines the polynomial heirarchy.

Definition 7 (PH)

PH =
⋃

k≥0

Σi

What is an upperbound for PH. For example, we know that NP is in PSPACE from Savitch’s
theorem (Lecture 3). From simple simulations, it follows that following proposition to show
NPNP ⊆ NPPSPACE = PSPACEPSPACE ⊆ PSPACE. Inductively applying this, will give us the
following claim.

Proposition 8 NP ⊆ PH ⊆ PSPACE.

We will show thefollowing characterisation for the classes in the polynomial heirarchy. How-
ever, we will postpone the proof to next-to-next lecture.

Theorem 9 A Language L is in Σk if and only if there is a B ∈ P and a polynomial p
such that

x ∈ L ⇔ ∃y1 ∀y2 · · · Q yk, (x, y1, y2, · · · , yk) ∈ B

where ∀i, |yi| ≤ p(|x|), and Q = ∀/∃ depending on whether k is odd or even.

We will get back to this theorem again after one lecture. Now we will start with the basic
notions of non-uniform complexity and introduce the basic circuit complexity classes so that
you can follow tomorrow’s ITCS seminar about this topic. Don’t miss it !.

4-3

2 Non-uniform Complexity

In the Turing machine model, the description of the machine that works for all inputs is
the same irrespective of the length of the input. A natural consideration is to relax this
requirement, and consider a scenario where there is one “computational device” for each
input length. However, this can conceivably compute more than what a Turing machine
can compute, since there is no restriction on how the description of the nth (which works
of all inputs of length n) computational device is obtained. In fact, such a set up can solve
even undecidable problems. We will make this more precise later.

Hence, it is reasonable to impose more contraints on how to obtain the description of device
given n. These are called uniformity constraints for the computational model. We will now
describe a specific example of this computational device called Boolean circuit.

Definition 10 (Boolean Circuit) A Boolean circuit is a directed acyclic graph, G =
(V, E) such that each v in V with non-zero in-degree called the gate of the circuit is an
element of B = {¬,∨,∧} except leaves which are labeled by x1 . . . xn. We say that the cir-
cuit evaluates to 1 on input x (denoted by C(x) = 1) if and only if the root gate evaluates
to 1 on input x.

Clearly there is a Boolean circuit for each input n. Thus we need to talk about circuit
families.

Definition 11 (Acceptace Condition) A language L ⊂ Σ∗ is accepted by a circuit fam-
ily {Cn}n≥1 if ∀n, x ∈ {0, 1}n : x ∈ L ⇔ Cn(x) = 1.

Now that we have defined a seemingly different computational model, we can talk about
various parameters associated with it which could be considered as the resources of compu-
tation. Following are some of them which we will use in this course.

Definition 12 (Resources of computation) For a circuit family {Cn}n≥1, define for
each n the following parameter for the circuit Cn.

• Size: Number of edges in the underlying graph Cn.(When it will not matter in the
order notation, we can talk about size as the number of vertices of the graph.

• Depth: The length of the longest path from any leaf to root in the graph of Cn.

• Width: Consider the layered graph of Cn with the constraint that gates in each layer
takes in inputs from the previous layer. The number of edges in each layer is the width
of the circuit.

4-4

• Fan-in: maximum in-degree of any gate. Sometimes, ∨-fanin, ∧-fanin are also re-
sources.

Now we get back to the question of uniformity specific to the circuit model of computation.
We demonstrate the non-uniform family of circuits can solve ha Halting problem. Consider
the halting set

H = {1n|nth TM Mn halts on input 1n}

Here is a circuit family {Cn}n≥1 that computes H.

Cn =

{

x1 ∨ ¬x1 if Mn halts on 1n

x1 ∧ ¬x1 if Mn doesn’t halt on 1n

Thus, it is undecidable to compute the description of the above Cn given n as the input
although the family itself is computing the halting set H. This motivates the study of
uniformity constraints.

Various uniformity constraints are studied for circuit families depending on the context in
which it is applied. For example, a log space uniformity constraint will say given n the
description of Cn should be computable by a TM in log space. Sometimes, this is made
more precise by saying that the predicate child(n, i, j, g1, g2) (in circuit Cn, the node i of
type g1 feeds into node j of type g2) is checkable in log space. One could also consider other
uniformity constraints based on various resources.

3 Circuit Complexity Classes

We will now define circuit complexity classes. But we motivate them using example prob-
lems. We will look out for doing as efficiently as possible in terms of the parameters that
we defined. We consider first the parity problem of n bits.

Definition 13 (Parity Problem)
Input: n bits x1, x2, · · · , xn;
Output: x1 ⊕ x2 ⊕ · · · ⊕ xn.

Suppose we want to compute the parity of 2 bits, x1⊕x2. This can be written as x1x2+x1x2.
Now the Parity Problem can be solved using this by divide and conquer. This gives a
complete binary tree like circuit of two input Parity problem. Replace each of them with
the small circuit above. The circuit has poly-size, fanin of each gate as 2, log-depth. This
motivates the definition of a natural class of problems.

4-5

Definition 14 (NC1)

NC1 =

{

L

∣

∣

∣

∣

∃ a poly-size, bounded (constant) fanin,
log depth circuit family accepting L.

}

.

Now we consider circuits for another natural problem of adding two n bit numbers.

Definition 15 (Addition Problem)
Input: Two n-bit numbers a, b;
Output: The (n + 1)-bit number a + b

A straightforward way is the circuit implementation of the highschool method of adding
two n bit numbers ; adding from the lowest bit to highest one trasnferring carry from one
stage to the other. The circuit corresponding to this method need depth n. The reason is
that the higher bits will depend on the carry is computed even at the first stage.

A smarter way to implement this is the well-known ”Look ahead method”: Why not calculate
the carry bits directly? Consider how the carry bit fluctuates between 0 and 1 as we move
across stages. When the carry is 1, it is clear that both the input bits are 1, and this carry
propogates as long as the two inputs bits at the stages are 1s. When it falls to 0, it is
because both the input bits are 0 at that stage. It is not hard to find out the complete
formula of cj ,

cj =
∨

i<j



(xi ∧ yi) ∧





∧

j≤k<i

(xk ∨ yk)









.

So cj could be evaluated by a constant depth (although unbounded fanin) circuit. With
this carry bits, the Addition Problem could be solved by a poly size 1, constant depth,
unbounded fanin circuit for addition. Now we define a circuit complexity class based on
this kind of circuits.

Definition 16 (AC0)

AC0 =

{

L

∣

∣

∣

∣

∃ a poly-size, bounded (constant) depth
circuit family accepting L.

}

.

It is also easy to compare between these classes.

1the size of the circuit is O(n3) which can be made to O(n2 log n), and it is unknown whether there is a
linear sized adder !

4-6

Theorem 17 AC0 ⊆ NC1

Proof Take any AC0 circuit family. Each circuit Cn has constant depth, poly(n) size.
Replace each ∧ and ∨ gates of unbounded fan-in by a log-depth tree of bounded fanin gates
of the respective type. This gives a log depth circuit of poly size of bounded fan-in ∧ and
∨ gates.

Later in this course we will prove that this inclusion is strict by proving that Parity is not
in AC0.

We saw that Parity problem is in NC1. How powerful is this problem. In fact it also
defines a gate ⊕ which is essentially addition in F2 or sum modulo 2. Generalising this,
one can consider sum modulo an integer q ∈ Z. Thus, one can study a new circuit complex
class ACC0, that is AC0 + ”all mod gates”. In another words, we modify the definition of

Boolean Circuit, that is, from B = {¬,∨,∧} to B =
{

¬,∨,∧,
⋃

q∈Z
{ mod (q)}

}

, and other

requirement remains the same.

Generalizing the proof of the fact that Parity problem is in NC1, we can prove that an
arbitrary mod (q) gate can also be computed in NC1. This give the following result.

Theorem 18 ACC0 ⊆ NC1.

Finally we will end this quick overview by setting up an upper bound for all these complexity
classes. We claim that any NC1 circuit can be evaluated in L. Given a circuit Cn and an
input x, we can evaluate Cn(x) by a depth first search starting from the root node on the
graph G and keeping track of the evaluated bit of the root. Since the depth is log, and
fan-in is bounded, the DFS can just store the path from the root to the current search point
from the root as the information that is needed for backtracking. And this takes just log n
bits of storage.

This gives,

Theorem 19
AC0 ⊆ ACC0 ⊆ NC1 ⊆ L

4-7

