
ITCS:CCT09 : Computational Complexity Theory Mar 14 & 16, 2009

Lecture 5 & 6

Lecturer: Jayalal Sarma M.N. Scribe: Hongyu Liang

In the previous lecture we introduced the Boolean Circuits, a non-uniform computa-
tional model, together with some related circuit classes such as AC

0(polynomial-size,
constant depth and unbounded fanin), ACC

0(AC
0 augmented with the MOD gates) and

NC
1(polynomial-size, O(log n) depth and constant fanin). We showed that AC

0 ⊆ ACC
0 ⊆

NC
1 ⊆ L. Today we will introduce a new circuit class, named TC

0, which is obtained by al-
lowing the use of threshold gates Thn

k in AC
0. We will show that TC

0 ⊆ NC
1. Furthermore,

we will prove that for a small threshold parameter k, namely k = logO(1) n, the threshold
function Thn

k can actually be computed in AC
0. We will prove it by means of hash families.

1 Threshold Functions and TC
0

First we give the definition of threshold functions as follows.

Definition 1 (Threshold Functions) Given n, k(k ≤ n), taking n bits x0, x1, . . . , xn as

inputs, the threshold function Thn
k is defined as:

Thn
k(x1, x2, . . . , xn) =

{

1
∑n

i=1 xi ≥ k,

0 otherwise.

From now on we will omit the inputs of Thn
k if they are clear and unambiguous. We can

regard the threshold functions as a kind of gates used in circuits, which we call Threshold

gate. For the sake of simplicity, we also use Thn
k to denote the n-fanin 1-fanout gate which

outputs Thn
k(x1, x2, . . . , xn) when taking x1, x2, . . . , xn as inputs.

Now we are able to give the definition of the circuit class TC
0.

Definition 2 TC
0 is the class of all languages which are decidable by boolean circuits with

constant depth, polynomial size, containing only unbounded-fanin And gates, Or gates and

Threshold gates.

The majority gate is defined as Maj(x1, x2, . . . , xn) = Thn
n/2(x1, x2, . . . , xn). It’s easy to

see that threshold gates can be simulated by majority gates because we can rewrite Thn
k as:

Thn
k(x1, x2, . . . , xn) =

{

Maj(x1, x2, . . . , xn, 0, . . . , 0), n < 2k

Maj(x1, x2, . . . , xn, 1, . . . , 1), n ≥ 2k

5 & 6-1

where in both cases there are |n− 2k| addition input bits. So we can also define TC
0 using

Maj gates instead of Threshold gates.

Obviously AC
0 ⊆ TC

0. We can further prove that TC
0 is contained in NC

1. A first idea
is motivated by the observation that Thn

k = 1 if and only if
∑n

i=1 xi ≥ k. Thus we can
compute the sum of all n input bits and compare the result with k. However, a more
detailed analysis reveals that this idea is not good enough. Remember that the AC

0 circuit
for adding two n-bit numbers, which we introduced formerly, requires O(n)-fanin gates.
Since the sum of n 1-bit numbers can have Ω(log n) bits, we can only construct a circuit for
Thn

k with polynomial size, O(log n) depth and O(log n)-fanin gates. Therefore converting
this circuit to the one with bounded fanin will make its depth become O(log n log log n),
which is not allowed in NC

1.

To get rid of this extra O(log log n) factor we need to use another idea which is essnetially
used to prove the folllowing theorem which we aimed for.

Lemma 3 Adding n n-bit numbers can be done in NC
1.

Proof First we consider only 3 n-bit numbers. We wish to find a circuit in AC
0 computing

the sum of them with only bounded-fanin gates, so that we can build a recursive circuit to
add n n-bit numbers. But this is unable to be done even if there are only two addends.
Now a natural question appears: What can we gain when restricting AC

0 to contain only
bounded-fanin gates?

It turns out that although we cannot compute the sum of three n-bit numbers, we can
reduce it to the addition of another two n-bit numbers using only bounded-fanin gates.
Suppose we want to add a = an−1an−2 . . . a0, b = bn−1bn−2 . . . b0 and c = cn−1cn−2 . . . c0.
Consider another two n−bit numbers d and e defined by:

di =

{

ai ⊕ bi ⊕ ci, 0 ≤ i ≤ n − 1
0. i = n

and

ei =

{

0, i = 0
(ai−1 ∧ bi−1) ∨ (ai−1 ∧ ci−1) ∨ (bi−1 ∧ ci−1). 1 ≤ i ≤ n

It is easy to verify that a+ b+ c = d+ e, and the construction of d and e can be done using
polynomial-size, constant-depth circuit with only bounded-fanin gates. In order to calculate
the sum of n n-bit numbers, we first divide them into groups each of which contains no
more than 3 elements. Then, inside each group, we use the above method to construct the
two new addends. We do this recursively until there are only two numbers left, and then
use the original AC

0 circuit to compute the sum of them. Now, the recursive circuit we
build has polynomial size, O(log n) depth and contains only bounded-fanin gates except for
the last level. For the last level we need only trivially change it into a NC

1 circuit.

5 & 6-2

Theorem 4 TC
0 ⊆ NC

1.

Proof It follows from Lemma 3 that adding n 1-bit numbers can be done in NC
1. In

order to compute Thn
k , we just need to add all the n input bits and compare the result with

k.

So far we have proved that AC
0 ⊆ TC

0 ⊆ NC
1. It can be further shown that ACC

0 ⊆ TC
0.

In fact, this will follow from what we show below.

Although we have put TC
0 into its right position, it is useful for us to better understand

it. Except for the threshold functions we defined, what other functions can be computed in
TC0? Remember that the threshold function depends only on the number of 1s amongst
the inputs. Indeed, this property precisely characterize a large class of functions.

Definition 5 (Symmetric Functions) A function f of n variables is called symmetric
if ∀σ ∈ Sn, f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)), where Sn is the collection of all

permutations of [n].

Unless otherwise stated, throughout this note all the inputs and outputs of symmetric
functions are from {0, 1}. Notice that threshold functions are all symmetric. Indeed we
have the following theorem:

Theorem 6 TC
0 contains all symmetric functions.

Proof Suppose f is an arbitrary symmetric Boolean function of n variables. We know
that f only depends on the number of 1s among its input. Hence the number of different
possibilities for the input setting of the function is exactly n.

Given x as the input if we are able to detect the number of 1s in the input, the function
can be hardwired into the circuit.

2 Threshold Functions in AC
0

One of the main interest in circuit complexity is the question of whether one circuit class
is strictly contained in another. So we may ask whether AC

0 (TC
0 or AC

0 = TC
0. The

latter will hold if and only if we can simulate threshold gates in AC
0. It is easy to see that

Thn
1 = ∨ and Thn

n = ∧, so Thn
k is in AC

0 if k = 1 or n. We may ask that is there any other
k such that Thn

k ∈ AC
0? It turns out that many k enables this inclusion.

5 & 6-3

1

x1 x3x2
xn

Th
n

2
Th

n

1
Th

n

3 Th
n

n

∧ ∧ ∧

∨∨∨∨

∨

v1 v2 v3
vn

∧

Figure 1: Threshold circuit computing any symmetric function. vi is the value of the function
when the number of 1s in the input is i.

Theorem 7 Thn
k ∈ AC

0 for k = logO(1) n.

In this class we will only prove a much simpler result as follows. 1

Corollary 8 Thn
log n ∈ AC

0.

In order to prove this we need some nontrivial techniques. Let {xi | 1 ≤ i ≤ n} be the input
of Thn

log n. Let k = log n and S = {i | xi = 1}. What we need is to distinguish between the
two cases |S| < log n and |S| ≥ log n. The idea is to construct a hash family such that it
has some ”good” properties when |S| < log n, and this property can be tested in AC

0.

We need some basic concepts first. A hash family H is a collection of hash functions with
the same domain and range. We say H is good for a set S if ∃f ∈ H such that fS is a
bijection, where fS is the function f restricting on the input set S. We are interested in
the collection of hash functions from X = [n] to a set T = [t], where the value of t will be
determined later. More precisely, we expect H to have the following properties:

1. If |S| < k, then H is good for S.

1The exposition that we present here was communicated to us by Prof. Meena Mahajan.

5 & 6-4

2. If |S| > t, then H is not good for S.

3. If k ≤ |S| ≤ t, then there is no constraint on H.

Notice that the second property is trivial, since all functions in H has the same range [t].
The third property is actually redundant, but we still put it here for purpose of clearness.
Now we only need to consider the first property.

Lemma 9 Let t = log2 n, p be a prime n ≤ p ≤ 2n. Define a hash family Hp as follows:

Hp =

{

hα

∣

∣

∣

∣

α ∈ {1, 2, . . . , p − 1},
hα = (αx mod p) mod t

}

Then Hp is good for S if |S| < k.

Proof Let W = {(α, u, v) | α ∈ {1, 2, . . . , p − 1}, u, v ∈ S, hα(u) = hα(v)}, where hα is
defined in Lemma 9. Suppose there exists S ⊆ [n], |S| < k such that Hp is not good for S,
then we have |W | ≥ p − 1.

Now we fix u, v ∈ S, u 6= v and let Au,v = {α | hα(u) = hα(v)}. Note that α ∈ Au,v means
that (αu mod p) mod t = (αv mod p) mod t, and thus (αu mod p − αv mod p) = kt,
where k ∈ {0,±1, . . . ,±p−1

t }. Since p ≥ n = |S| and α > 0, we know that for a fixed k 6= 0
there is at most one α satisfying the above equality, and when k = 0 such α doesn’t exist.
So |Au,v| ≤

2(p−1)
t , and we have |W | =

∑

0≤u≤v<n |Au,v| ≤
2(p−1)

t

(

log n
2

)

< p − 1 because of

our choice t = log2 n, which contradicts our previous result of |W | ≥ p − 1.

Next we need to show that testing whether Hp is good for a given set S can be done in AC
0.

Moreover, if this is the case, we need to find h ∈ Hp such that hS is a bijection. Why does
it make sense? Let’s consider the following process. First, we use an AC0 circuit to test
whether Hp is good for S. If the answer is no, we assert confidently that |S| > k thanks
to the three properties of Hp. On the other hand, a ”yes” answer implies that |S| ≤ t

which is not enough for us. But under this case we only need a little more work to show
that computing Tht

log n instead of Thn
log n is sufficent, which we may expect to have a lower

complexity. Now we formalize the ideas.

Lemma 10 Given a hash family Hp defined in Lemma 9 and a set S, we can decide whether

Hp is good for S in AC0. If so, we can find h ∈ Hp such that hS is a bijection.

Lemma 11 Given h ∈ Hp, S ⊆ [n] such that hS is a bijection, we have that |S| ≥ log n if

and only if at least log n bits of {yj | 0 ≤ j < t} are 1s, where yj =
∨

i∈[n](h(i) = j).

5 & 6-5

Lemma 12 Th
log2 n
log n ∈ AC0.

Proof [Lemma 10] Let x = {x1, x2, . . . , xn}. We first define some small circuits as
follows.

∀i ∈ [n],∀j ∈ [t], Bα,i,j =

{

1 if hα(i) = j

0 otherwise.

∀j ∈ [t], Cα,j(x) =

{

1 if there exist i1, i2 ∈ S s.t. hα(i1) = hα(i2) = j,

0 otherwise.

∀α ∈ [p], Dα(x) =

{

1 if hα|S is 1-1,
0 otherwise.

E(x) =

{

1 if Hp is good for S,

0 otherwise.

It suffices to show that there exists an AC0 circuit computing E. Note that we have the
following:

E(x) =
∨

α∈[p]

(Dα(x))

Dα(x) =
∧

j∈[t]

(¬(Cα,j(x)))

Cα,j(x) = Thn
2 (x1 ∧ Bα,1,j , x2 ∧ Bα,2,j , . . . , xn ∧ Bα,n,j)

It is easy to verify that this recursive construction of E is in AC0. A modified version of
this circuit will output α such that Dα(x) = 1 if E(x) = 1, while we omit the details here.

Proof [Lemma 11] It immediately follows from the fact that hS is a bijection.

To proof Lemma 12 we need another result stated as follows.

Lemma 13 Adding log n n-bit numbers can be done in AC0.

Proof Let l = log n. Suppose we have inputs a1, a2, . . . , al, where ai =
∑n−1

j=0 ai,j2
j , and

want to compute the sum of them. ∀j ∈ {0, 1, . . . , n − 1}, we define Sj =
∑l

i=1 ai,j . That
is, we use Sj to denote the jth bit sum. Note that Sj ≤ log n so the size of Sj is at most

5 & 6-6

log log n. Let t = log log n and Sk =
∑t−1

j=0 Sk,j2
j . Now we rewrite the sum:

l
∑

i=1

ai =
n−1
∑

k=0

Sk2
k

=
n−1
∑

k=0

(
t−1
∑

j=0

Sk,j2
j)2k

=
t−1
∑

j=0

(
n−1
∑

k=0

Sk,j2
k+j)

Notice that
∑n−1

k=0 Sk,j2
k+j) has at most n + log log n bits, so we have reduced the sum of

log n n-bit numbers to that of log log n numbers of n + log log n bits each. If we perform
this for i times, we can reduce the original problem to the summation of log(i+1) n numbers
of n+

∑i+1
j=2 log(j) n bits each, where log(k) denotes the log function iterated by k times. We

stop until at most two addends are left, that is, after h = min{k | log(k+1) n ≤ 2} rounds
of reduction. To bound the size of the left number we need the following lemma, although
we will not prove it here.

Lemma 14 Let h = min{k | log(k+1) n ≤ 2}. We have

k
∑

i=2

log(i) n = O(log n)

and

k
∏

i=2

log(i) n = O(log n)

Using this lemma, we know that the reduction stops at adding 2 numbers of n+O(log n) bits,
which can be done in AC0. We are left to show that the reduction process can also be done
using AC0 circuits. The number of rounds of reductions is log∗(n) = min{k | log(k+1) n ≤
2}. It can be shown that the two addends in the last round only depend on log∗(n) bits.
Combined with Lemma 15 showed later, we know that the reduction can also be done in
AC0.

Lemma 15 Suppose f is a function from {0, 1}m to {0, 1}. There exists a const depth,

O(2m) size circuit which computes f .

Proof Just consider the equivalent DNF of the function.

5 & 6-7

Now we are able to prove Lemma 12.

Proof [Lemma 12] We divide the log2 n numbers into log n groups each of which contains
log n numbers. For every group we build an AC0 circuit computing the sum of the numbers
in it, and then we use another AC0 circuit to add the log n group sums.

Using Lemma 10,11 and 12, it is not hard to prove Corollary 8 and we omit the rigorous
proof. The basic idea is that we first use an AC0 circuit to test if Hp is good for S. If the
answer is no, we know that |S| ≥ t so Thn

k = 1. If the answer is yes, we can find a function
h ∈ Hp such that hS is 1-1. Then we use Lemma 11 to reduce the computing of Thn

log n to

Th
log2 n
log n , which can be done in AC0 thanks to Lemma 12.

Theorem 7 shows that for any k, Thn
logk n

∈ AC0. But what about larger k, say, k = Ω(n)?

It still remains open.

3 NC Hierarchy

We can define some hierarchy of circuit classes by relaxing the constraints of some known
circuit class like AC0 and NC1. We explicitly give the following definitions.

Definition 16 ACk is the class of all languages which are decidable by boolean circuits

with O(logk n) depth, polynomial size, containing only unbounded-fanin AND gates, OR

gates and NOT gates.

Definition 17 NCk is the class of all languages which are decidable by boolean circuits

with O(logk n) depth, polynomial size, containing only bounded-fanin AND gates, OR gates

and NOT gates.

By definition it is easy to prove the following theorem.

Theorem 18 ∀k ≥ 0, NC
k ⊆ AC

k ⊆ NC
k+1.

However, except that AC
0 (NC

1, none of these inclusions are known to be strict.

5 & 6-8

