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1 Non-deterministic Oracle Turing Machines

In the previous lectures, we have introduced the concept of deterministic oracle Turing
machines. The concept of non-deterministic oracle Turing machines is just a direct extension
of that to the non-deterministic case.

To be precise, a non-deterministic oracle Turing machine (sometimes abbreviated to “ora-
cle NTM”) is just like a deterministic oracle TM, but with a non-deterministic transition
function (with some restrictions which we will discuss below). It has

• a finite state set, which contains two special states called the query state and the
answer state, aside from those states of an ordinary NTM

• a finite alphabet, which contains two special symbols 0 and 1, among other things

• one input tape, which is read-only

• one output tape, which is write-only

• a finite number of working tapes

• a query tape, which is considered to be a special working tape, and is included in the
computation of the machine’s space consumption

• an oracle which computes a language L

• a non-deterministic transition function

The machine is allowed to query the oracle many times, and use the answers from the oracle
to facilitate its own computation. Each of those queries works as follows

1. the machine writes a query string s onto the query tape, and enters the query state.

2. the oracle decides if s is in the language L, and if so, it replaces everything on the
query tape with the symbol 1; otherwise, it replaces everything on the query tape with
the symbol 0. After that, the oracle puts the machine into the answer state. This
counts as one single step for the machine.
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Please take note! To ensure that the only thing the NTM can do upon entering the query
state is to query the oracle, we allow the transition function to be non-deterministic if and
only if the current state is not the query state.

Just like any other computational model, we can define complexity classes based on oracle
NTMs.

Definition 1 For any complexity class A defined on NTMs and any complexity class B,
we define the complexity class AB to be the set of all languages L that satisfy the following
conditions

1. there is an oracle NTM M that runs within the resouce constraints specified by A

2. there is an oracle O that’s capable of computing a language L′ in B.

3. M with access to O computes L

2 The Polynomial-Time Hierarchy

Before introducing the main concept of this lecture, the polynomial-time hierarchy, we first
need to present a lemma, which lays the groundwork for understanding the hierarchy.

Lemma 2 we have the following relationships between oracle NTM complexity classes and
ordinary DTM and NTM complexity classes

1. NPP ⊆ NP

2. NPPSPACE ⊆ PSPACE

Proof

1. this is trivial

2. in previous lectures we have proved that for any (fully space-constructible) function
f(n) ≥ n, we have

NTIME(f(n)) ⊆ DSPACE(f(n))

which implies that
NP ⊆ PSPACE

by relativization, we have

NPPSPACE ⊆ PSPACEPSPACE
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which, combined with
PSPACEPSPACE ⊆ PSPACE

gives us the result we want.

2.1 Defining the Polynomial-Time Hierarchy with Oracle TMs

The polynomial-time hierarchy (or “PH” for short) is the polynomial analog of the arith-
metic hierarchy in recursion theory. It consists of a series of complexity classes, and can be
defined inductively by oracle TMs

Definition 3 For non-negative integers n, we define complexity classes ΣP
n and ΠP

n as fol-
lows

• ΣP
0 = ΠP

0 = P

• ΣP
n+1 = NPΣP

n for all n ≥ 0

• ΠP
n+1 = co − ΣP

n+1 for all n ≥ 0

In addition, we define
PH =

∪
k≥0

ΣP
k

In the following proposition, we summarize some of the basic properties of PH

Proposition 4 (Basic Properties of the Polynomial Time Hierarchy) we have

1. ΣP
1 = NP, ΠP

1 = coNP

2. ΣP
i = NPΣP

i−1 = NPΠP
i−1 for any integer i > 0

3. ΠP
i = co − NPΣP

i−1 = co − NPΠP
i−1 for any integer i > 0

4. for any integer i > 0, ΣP
i−1 ∪ ΠP

i−1 ⊆ ΣP
i ∩ ΠP

i

5. for any integer i ≥ 0, ΣP
i ⊆ PSPACE

6. for any integer i ≥ 0, ΠP
i ⊆ PSPACE
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7. PH ⊆ PSPACE

Proof

1. from the clause 1 of lemma 2, we know that

NPP ⊆ NP

and it’s trivial to show that NP ⊆ NPP, thus

ΣP
1 = NPP = NP

and
ΠP

1 = co − ΣP
1 = coNP

2. from the definitions of oracle NTMs, it’s obvious that for any complexity class C, we
have

NPC = NPcoC

Specifically, for any positive integer i

ΣP
i = NPΣP

i−1 = NPco−ΣP
i−1 = NPΠP

i−1

3. from the definition of PH and the previous clause, for any positive integer i

ΠP
i = co − ΣP

i = co − NPΣP
i−1 = co − NPΠP

i−1

4. this is an immediate corollary of the previous two clauses

5. this can be proved using an induction on i

the base step for i = 0, this is just the fact that ΣP
0 = P ⊆ PSPACE

the induction step suppose the statement is true for i = k, for i = k + 1, we have,
from clause 2 of lemma 2

ΣP
k+1 = NPΣP

k ⊆ NPPSPACE ⊆ PSPACE

Thus the statement is proved for all non-negative integers i

6. this follows from the previous clause and the fact that PSPACE = coPSPACE.

7. this follows from clause 5 and the definition of PH
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2.2 Open Problems Related to the Polynomial-Time Hierarchy

There are several open problems concerning the basic structure of PH, with the notorious
“P versus NP” being the most commonly known. Besides that, we just want to list two of
them below, both weaker than “P versus NP”.

Open Problem 1 Is there some non-negative integer k such that PH = ΣP
k?

This phenomenon is commonly referred to as the “collapse” of the polynomial-time hierar-
chy.

Open Problem 2 Is PNP ⊆ NP?

You need to convince yourself that the containment is noway obvious from the definition.
Actually we can define a (non-trivial) new member of the polynomial-time hierarchy because
of this uncertainty

Definition 5 For non-negative integers n, we define complexity classes ΔP
n as follows

• ΔP
0 = P

• ΔP
n+1 = PΣP

n for any integer n ≥ 0

2.3 The Alternative Definition of PH Based on Alternating Quantifiers

In this subsection, we want to develop an alternative formulation of the polynomial time
hierarchy. In order to establish the equivalence between this formulation and the definition
we have just described above, we need some theorems.

Theorem 6 For any positive integer k, a language A is in the complexity class ΣP
k if and

only if there is a language B in ΠP
k−1 and a polynomial p(·) such that

x ∈ A ⇔ ∃y, |y| ≤ p(|x|) and (x, y) ∈ B

In order to prove this theorem, we’ll need the following two lemmas, which we will list here
without proofs. For the proofs, please read page 79 and 80 of Du and Ko’s book [1]
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Lemma 7 Let k ≥ 0

1. If A, B ∈ ΣP
k , then A ∪ B, A ∩ B ∈ ΣP

k , and Ā ∈ ΠP
k .

2. If A, B ∈ ΠP
k , then A ∪ B, A ∩ B ∈ ΠP

k , and Ā ∈ ΣP
k .

3. If A, B ∈ ΔP
k , then A ∪ B, A ∩ B, Ā ∈ ΔP

k .

Lemma 8 For any set A and any m > 0, define Am = {〈x1, x2, . . . , xm〉 : (∃i, 1 ≤ i ≤
m)xi ∈ A} and A′

m = {〈x1, x2, . . . , xm〉 : (∀i, 1 ≤ i ≤ m)xi ∈ A}. for any k, m > 0

1. A ∈ ΣP
k ⇒ Am, A′

m ∈ ΣP
k

2. A ∈ ΠP
k ⇒ Am, A′

m ∈ ΠP
k

Proof [Proof of Theorem 6]

• the “backward” direction

Suppose for the language A we can find a language B and a polynomial p(n) that
satisfy the specified condition, then we can construct an oracle NTM that computes A
as follows: for an input x, first use the NTM to “guess” a witness string up to length
p(|x|), call this string y, then use an oracle that computes B to test whether (x, y) ∈ B
is true, accepts x if and only if the oracle answers “yes”.

This is clearly an oracle NTM running in polynomial time and computes A. Thus we
have

A ∈ NPΠP
k−1 = ΣP

k

• the “forward” direction

This proof is a little convoluted, but the main theme is clear, suppose the language A
is in ΣP

k , then there should be an oracle NTM that’s able to compute it. A string x is
in A if and only if there is an accepting path of this oracle NTM on the input x. Our
job is to find an encoding scheme of possible accepting paths that meets the following
criteria

complete The encoding scheme should be able to correctly encode every possible
accepting path of the oracle NTM on every possible input string.

concise Given the fact that the oracle NTM is polynomial-time bounded, the length
of the encoding of an accepting path is also polynomially bounded

easy to verify Given an input string x and the encoding string of an accepting path
y, we can verify that y is indeed a valid encoding of an accepting path of the
oracle NTM on input string x, with the help of an oracle in ΠP

k−1.
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Now the actual proof, it’s a proof by induction

the base step when k = 1, it’s just the definition of NP using P and witnesses. We
have proved the validity of that before.

the induction step suppose the statement is proved to be true for everything less
than a particular k, now we want prove it for k.
In this case, by definition, we have access to an oracle D ∈ ΣP

k−1

Our first attempt to encode an accepting path is, not surprisingly, to capture
the configuration sequence along the way. We denote the configuration sequence
as α = 〈α1, α2, . . . , αm〉, where m ≤ q(|x|), where x is the input string, and q(·)
is the polynomial bounding the running time of the oracle NTM. α must satisfy
the following conditions

1. α1 is the initial configuration
2. αm is an accepting configuration
3. for any 1 ≤ i < m, αi 7→ αi+1 is a valid transition of the oracle NTM
4. for any 1 ≤ i < m, if αi is in the query state

– if the query string in αi is in D, then the content on the query tape in
αi+1 denotes a “yes” answer

– if the query string in αi is not in D, then the content on the query tape
in αi+1 denotes a “no” answer

This is indeed a complete and concise encoding. And the first three condi-
tions above can be verified in polynomial time. But unfortunately, there is no
clear evidence that the last condition can be verified easily with a ΠP

k−1 oracle.
To address this issue, we need to evolve our encoding scheme a little bit, and
transform the condition accordingly. We can collect all the query strings the
machine has used along the way into two tuples, namely u = 〈u1, u2, . . . , ul〉
and v = 〈v1, v2, . . . , vn〉. Then we can replace condition 4 with the following
conditions:

5. for any αi in the query state, the query string in αi is either in u or in v and
– if it’s in u, then the content of the query tape in αi denotes a “yes”

answer
– if it’s in v, then the content of the query tape in αi denotes a “no” answer

6. for any 1 ≤ i ≤ l, ui ∈ D

7. for any 1 ≤ i ≤ n, vi /∈ D

note that we can certainly make l, n ≤ m ≤ q(|x|). And the length of each query
string in u and v can be polynomially bounded. Condition 5 can be verified in
polynomial time. And according to clause 2 of lemma 2, we can construct a
language B2 in ΠP

k−1 as follows

B2 = {v : v satisfies condition 7}

7-7



We know that for condition 6 to hold, every string in u must be in D, which is a
ΣP

k−1 class language. By our induction hypothesis, we have a language B′
3 ∈ ΠP

k−2

and a polynomial r(·) such that

ui ∈ D ⇔ ∃wi, |wi| ≤ r(|ui|), 〈ui, wi〉 ∈ B′
3

We can collect all the wi into one single tuple w = 〈w1, w2, . . . , wl〉. Again using
clause 2 of lemma 2, we know the language defined by

B3 = {〈u,w〉 : (∀i, 1 ≤ i ≤ l)〈ui, wi〉 ∈ B′
3}

is a language in ΠP
k−2 ⊆ ΠP

k−1.
We can collect all the conditions mentioned above that can be verified in poly-
nomial time into one language

B1 = {〈x, α, u, v〉 : conditions 1, 2, 3, 5 hold}

then clearly B1 ∈ P ⊆ ΠP
k−1.

Finally we can define the ΠP
k−1 language B contained in the statement we want

to prove in the first place

B = {〈x, y〉 : y = 〈α, u, v, w〉, 〈x, α, u, v〉 ∈ B1, v ∈ B2, 〈u,w〉 ∈ B3}

according to clause 2 of lemma 7, B ∈ ΠP
k−1. And the length of the witness |y|

can be polynomially bounded by |α|, |u|, |v| and |w|, which, in turn, can all be
polynomially bounded by |x|.
This concludes our induction step.

And that concludes our prove for the “forward” direction

Thus the equivalence.

Corollary 9 For any positive integer k, a language A is in the complexity class ΠP
k if and

only if there is a language B in ΣP
k−1 and a polynomial p(n) such that

x ∈ A ⇔ ∀y, |y| ≤ p(n) and (x, y) ∈ B

Corollary 10 (Alternation of Quantifiers) For any positive integer k

• a language A is in ΣP
k if and only if there exists a language B ∈ P and a polynomial

p such that for any string x

x ∈ A ⇔ (∃y1, |y1| ≤ p(|x|))(∀y2, |y2| ≤ p(|x|))
. . . (Qkyk, |yk| ≤ p(|x|))〈x, y1, y2, . . . , yk〉 ∈ B

where Qk is the quantifier ∃ if k is odd, and it is ∀ if k is even.

7-8



• a language A is in ΠP
k if and only if there exists a language B ∈ P and a polynomial

p such that for any string x

x ∈ A ⇔ (∀y1, |y1| ≤ p(|x|))(∃y2, |y2| ≤ p(|x|))
. . . (Qkyk, |yk| ≤ p(|x|))〈x, y1, y2, . . . , yk〉 ∈ B

where Qk is the quantifier ∀ if k is odd, and it is ∃ if k is even.

Thus we can redefine the complexity classes ΣP
k and ΠP

k of the polynomial time hierarchy
directly from the familiar class P, without the need to introduce oracle NTMs. And as
we have just proved, this definition is equivalent to our original definition based on oracle
NTMs.

3 Alternating Turing Machines

In light of the alternating quantifier formulation of PH, we can define a new computational
model called the alternating Turing machines (or NTM for short). They can be seen
as a combination of non-deterministic Turing machines and co-non-deterministic Turing
machines.

The defining feature of an alternating Turing machine is that its states are divided into
two groups, called ∀-states and ∃-states. Like a non-deterministic TM, the computation of
an alternating Turing machine on an input string can be conceptualized as a configuration
tree. Each node in the tree corresponds to a possible configuration the machine may enter
during the computation on the given input string. A configuration can be classified as a ∀-
configuration or a ∃-configuration, according to the state it’s in. A ∀-configuration accepts
if and only if all children configurations accept; an ∃-configuration accepts if and only if
any children configuration accepts.

We can define complexity classes based on alternating Turing machines. Like DTMs and
NTMs, we use terms like ATIME and ASPACE to describe these complexity classes.

We have the following relationships between complexity classes defined on ATMs and com-
plexity classes defined on DTMs and NTMs

Theorem 11 For any (fully time constructible) function t, with t(n) ≥ n, ATIME(t(n)) ⊆
DSPACE((t(n))2).

This is theorem 3.17 on page 91 of Du and Ko’s book [1]. You can read that for the proof.

Theorem 12 For any (fully space constructible) function s, with s(n) ≥ n,
NSPACE(s(n)) ⊆ ATIME((s(n))2).
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This is theorem 3.18 on page 92 of Du and Ko’s book [1]. You can read that for the proof.

A unique resource measure for ATMs is the number of alternations (from ∀-configurations
to ∃-configurations or vice versa) on any computational path. If this number is bounded by
a constant k, then we will get complexity classes ΣP

k and ΠP
k .

For more connections between the ATMs and the polynomial time hierarchy, we have the
following relationships

Theorem 13 ∪k>0ATIME(nk) = PSPACE

Again the scriber refers to Du and Ko’s book [1] (corollary 3.19 on page 93) for the proof.

Theorem 14 ∪c>0ASPACE(c log n) = P

Please see corollary 3.22 clause (a) on page 95 of Du and Ko’s book [1] for the proof.
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