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Abstract—
Programmers use begin constructs in Chapel to create

fire and forget-style tasks, which do not perform any implicit
synchronization with the parent task. While this provides a
good facility to invoke parallel tasks, it poses issues when
the child task accesses a variable declared in the scope of
its ancestor. If the parent task exits before the child, its
scope is deallocated and the child may end up accessing
memory location that is no longer valid. The child task must
synchronize with the parent task to ensure legal access to its
variables, for example by means of atomic variables, sync
statements, or sync and single synchronization variables.
In this work, we address the above issue with a compile-time
partial inter-procedural analysis for outer variable accesses
in begin tasks to identify and report potentially dangerous
accesses. We make use of a Concurrent Control Flow Graph to
generate all possible run-time Parallel Program States (PPS).
All outer variable accesses that are potentially dangerous in the
generated PPS-es are then reported to the user for rectification.

Keywords-Concurrent CFG, PPS, begin statement

I. INTRODUCTION

Chapel [1] supports a task based parallel programming
model allowing users to design create-and-forget tasks.
This is achieved using the begin keyword as shown in
Figure 1. The tasks thus created are devoid of any implicit
synchronization with the parent task. This minimizes the
inter-task communication, thereby increasing effective par-
allelism. Tasks are put into a common task pool at run-
time, from which the threads execute the tasks in unspecified
order. If no explicit ordering is forced by the users, the parent
task of a begin task may finish execution before the begin
task.

A begin task can refer to memory locations which are
not defined inside its scope. We define such accesses as
Outer Variable (OV) accesses. The scope defining the outer
variable is labelled as the parent scope of the variable. The
begin tasks with OV accesses should be synchronized with
the parent scope, failing which the accesses might result in
fetching invalid memory locations. For example in Figure 1
the access of outer variable x in Task B (Line 10) can happen
after

This issue gets exacerbated with nested begin tasks.
Chapel allow task nesting with a begin task can create new
begin tasks inside it. In Figure 1, Task B is a nested begin
task as it is declared inside Task A. The nested task thus
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proc outerVarUse( ) {
var x: int = 10;
var doneA$: sync bool;
begin with (ref x) { // TASK A

// safe access
writeln(x++);
var doneB$: sync bool;
begin with (ref x){ // TASK B
// potentially dangerous access.

writeln(x);
doneB$ = true;

}
writeln(x);// unsafe access
doneA$ = true;
doneB$;

}
doneA$;
begin with (in x){ // TASK C

writeln(x);
}

}

Figure 1: Chapel code with three tasks with outer variable
access. The outer variable x is accessed in Lines 6, 10 and
13. The sync variables doneA$ and doneB$ is used to
synchronize with the parent task. The access in Line 10
may happen after the parent task has exited and hence is
potentially dangerous.

created lacks any implicit synchronization with the parent
begin task or any of its ancestor tasks.

Outer variables can be passed to begin like a normal
function, with the ref keyword used to denote variables
which are passed by reference. If the begin task is inter-
ested only in the value of the variable (at the time of task
definition) users can make use of the in keyword which will
ensure that all accesses to the variable inside the begin
task are made on a local copy and operations executed on
the variable are not visible outside the task.

Another challenge while dealing with the nested task is
Chapel allows function nesting where a procedure can be
defined inside another procedure. All live variables of the
parent procedure at the time of definition are accessible in
the child procedure. Such nested functions can be invoked
from a begin task, thus resulting in outer variable accesses
inside the begin task without passing a reference of the



variable to the begin task.
Chapel allows users to have a point-to-point synchro-

nization between the parent task and begin using special
synchronization variables, sync and single. This allows
the users to control and delay the synchronization point
between two tasks and judiciously allow the parent task to
progress as much as possible. Apart from the sync and
single variable Chapel also makes use of atomic integer
operations for point-to-point synchronization. In this work,
we limit our discussion to just the synchronization variables.

Consider the Chapel program given in Figure 1, with three
begin statements starting at Lines 4 (Task A), 8 (Task B)
and 18 (Task C). The outer variable to these begin tasks
x is defined in Line 2. Task C accesses a local copy of the
variable x (pass by value), ensuring the safety of all accesses
of x in the task. Task A and the nested Task B refer to the
original memory location of the variable and accesses of
the memory location inside these tasks need to be properly
synchronized with the parent task to ensure the validity of
the address location.

Our aim is to identify outer variable uses inside begin
tasks without proper synchronization with the parent scope
of the variable. In Figure 1, the outer variable x is accessed
in lines 6, 10 and 13 each of which should be synchronized
properly with the parent task. The safety of variable accesses
in Lines 6 and 13 (in Task A) is ensured as the parent task
would wait until the Line 14 is executed in Task A. However,
the variable access in Line 10 is dangerous as there is no
scenario where the parent task, is waiting for the Task B.
This could cause the parent task to exit and invalidate the
memory location of variable x before the task B access the
location. If we swap positions of lines 14 and 15 in Task
A, a wait chain from Task B to the parent task (line 11
→ line 14 → line 15 → line 17) will ensure the safety of
the variable access in line 10. If there were multiple paths
that the program execution can follow (due to branches)
our analysis ensure that all accesses are safe in all possible
execution paths.

For identifying such dangerous accesses we abstract out
the use of outer variable uses, creation of begin tasks
and synchronization events in the given program into a
Concurrent Control Flow Graph (CCFG) [2]. In CCFG, the
nodes store the details of outer variable uses which is linked
to its parent scope, along with the synchronization events.
The edges provide the information on the control flow and
begin task creation. For the CCFG abstraction generated
a conservative approximate set of all Parallel Program State
(PPS) that are possible at execution-time is computed. The
compiler use these PPS-es to identify the outer variable
accesses that are not properly synchronized with the parent
scope. If such occurrences are found, the compiler reports
the point of outer variable access along with the outer
variable under consideration to the user.

The paper makes the following contributions:

• To the best of our knowledge, this is the first work
providing a solution for identifying the accesses-after-
free of external memory locations in a task parallel en-
vironment enabled with point-to-point synchronization.

• We extend the solution to handle hidden external vari-
able accesses in nested functions where the external
variables are not passed on as an argument.

From our experiments, our analysis is able to identify 63
use-after-free instances of outer variable uses in the Chapel
version 1.11 [3] test suite.

Section II gives a brief explanation of Chapel language
constructs used in the paper. Section III explains our com-
piler pass in detail. Section IV gives details about the imple-
mentation. Section VI provides a brief discussion about the
related work. Section V presents experimental evaluation.
Section VII lists the conclusions and possible future work.

II. CHAPEL BACKGROUND

In this section, we give brief description about synchro-
nization options available for begin in Chapel. The begin
tasks with outer variable accesses may use point-to-point
synchronization to synchronize with the parent scope of the
outer variable.
single and sync are specialized synchronization vari-

able types available in Chapel. Programmers use single
variable to synchronize a single point in child task to
multiple points in parent task and a sync variable to reuse
the same sync variable to synchronize multiple events. A
synchronization variable can have two states: full and empty.
Full state is equivalent to a set flag, whereas the empty
state indicates an unset flag. A variable can change from
empty to full when a value is written into it. A single
variable, once filled, will not change to empty state whereas
a read on a sync variable will change the state from full to
empty, clearing the value written into it. The synchronization
variables (of type sync and single) are need not be
passed to the begin task as they are universally visible.
The synchronization variables are named with a suffixed $
by convention to distinguish them from normal variables.
This helps to reduce the odds of users introducing reads and
writes on synchronization variables that can result in infinite
waiting loops. The default initialization of all synchro-
nization variables is the empty state. The synchronization
variables can be explicitly initialized to the full state. The
reads and writes to sync variables are internally executed
using special functions readFE and writeEF respectively. The
readFE method blocks the execution of the current task
until the sync variable is full. The value of the sync
variable is cleared and the state set to empty when this
method completes. The writeEF method blocks until the
sync variable is empty. The state of the sync variable
is set to full when this method completes. The reads on
a single variable are executed using a readFF function.
The readFF method blocks until the variable is full, but will
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Figure 2: CCFG generated for procedure outerVarUse in
Figure 1. Empty Outer Variable sets are not shown.

retain the full state and the value of the variable when the
method is complete. Multiple writes to a single variable
are prohibited as per Chapel specifications [1].

In Figure 1, two sync variables doneA$ and doneB$
are defined to protect the accesses of the outer variable x,
in Tasks A and B respectively. Since, no initialization state
is specified, both doneA$ and doneB$ are initialized to
the empty state. The state of sync variable doneA$ is set
to full in line 14 (inside Task A). Since initial state of the
doneA$ is empty, Line 14 can be executed without any
wait time. Line 17 in parent task, waits until the state of
doneA$ is full and then changes its state to empty. Hence,
the parent task waits until the Task A statement in line 14
is completed. Similarly, Task A (at line 15) waits for Task
B (at line 11) due to the synchronization variable doneB$.

As the number of begin tasks increases the point-to-
point synchronization might become costlier. In such cases
the programmer can create a sync block bounding all the
begin tasks. A sync block creates a fence that blocks
the parent task at the end of the sync block until all child
tasks declared inside the sync block complete. This ensures
that the parent task does not progress until the begin task
finishes its execution, and thereby ensures that the outer
variable of concern is alive at the time of access.

III. OUTER VARIABLE USE AFTER LEXICAL SCOPE

In this section, we explain the compiler pass in detail.
The compiler pass is executed on the Chapel intermediate
code representation, where the special read/write functions
for sync and single are embedded in. To improve
the analysis scalability, we restrict ourselves to a partial
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Figure 3: Sync variables paired for procedure
outerVarUse in Figure 1. Some of the safe transitions
are omitted. The subscript of the variable in OV set denotes
the node corresponding to the access. In state column E
means empty and F means full.

inter-procedural analysis where the outermost procedures
containing the begin tasks are analyzed separately.

The overall compiler analysis can be divided into two
parts. For performing our analysis, we need to know the
control flow and the synchronization flow in a concurrent
settings. We capture these information along with the outer
variable accesses using a concurrent control flow graph
(CCFG). The algorithm for finding unsafe memory accesses
run on the constructed CCFG.

A. CCFG Construction

A CCFG is an abstraction of the input Chapel program
capturing the concurrent control flow details and outer
variable accesses. Each node in the CCFG is bounded by a
Concurrent Control flow event like encountering the begin
statement, read/write on a synchronization variable (readFE,
readFF or writeEF) or sequential control flow events like
branches. The CCFG thus created is then subjected to a



pruning process based on a set of predefined rules for
removing safe nodes.

Figure 2 represents the CCFG generated from the Chapel
code given in Figure 1. In Figure 2 Nodes 0,7,8,10 the
represent the parent task strand (1,4,5,6) comprehends the
Task A, Nodes 2 and 3 comprehends Task B and node 9
represents task C.

Each node is associated with an Outer Variable (OV) set,
which maintains the set of outer variable uses inside the
node. For example in Figure 2, the OV set of Node 1 is
{x}. This represents the use of outer variable x by Task A
in Line 6 in Figure 1. Similarly the x in the OV set of Node
4 represents the use of x in Line 13. Each outer variable use
is associated with the declaration information of the variable.
The declaration information will contain the details of the
parent scope. For instance, the outer variable uses in Nodes
1, 2, 4 are associated with the declaration information of x
which stores the end of parent scope details (Node 10).

The sub-graphs of the nested functions of the parent
task are maintained separately and are also inlined at the
call sites. This allows our analysis to identify all hidden
outer variable accesses in the begin task, that might occur
due to a call to a nested function from the begin task.
Inlining the nested functions makes our analysis context
sensitive and improves the precision of analysis. As a result
of inlining, multiple copies of the same begin task can be
present in the CCFG. During inlining, we maintain a call
stack of the nested function to identify recursion and prevent
infinite expansion. We stop inlining as soon as we identify
a recursion.

Nodes which contain operations on synchronization vari-
ables are classified as sync nodes. As soon as we encounter
a synchronization event a new node is generated. Hence the
CCFG can have have at-most one synchronization operation
per sync node. The sync nodes store the synchronization
variable and their potential state change. In Figure 2 the
nodes 2, 4, 5 and 7 represents the sync nodes.

The edges can be classified as either control edges or task
edges. The task edges denote the creation of a new begin
task. In Figure 2 the dotted arrow lines represent the task
edges (for example edge 0 → 1). The control edges illustrate
the control flow direction (for example edge 0 → 7).

CCFG pruning: Not all tasks need to be analyzed for
OV accesses. In particular, tasks that do not have external
memory accesses and synchronization events which will
affect the relative execution of rest of the tasks are safe.
In Figure 2 the node 9 representing Task C can be pruned
out since it does not contain any external memory access
or synchronization event. Our analysis identifies safe tasks
for CCFG pruning. The tasks identified as safe are pruned
without affecting the correctness of the analysis.

Our analysis uses the following rules to identify safe tasks.

Rule A. A begin task that does not contain any nested

task or refers to any outer variable.

Rule B. A begin task, which is immediately encapsulated
by a sync statement, provided all nested tasks are safe.

Rule C. A begin task, in which the scope of all external
variables accessed by the task is protected by a sync block.

Rule D. A begin task, in which all nested tasks are safe
and is by itself not referring to any outer variable.

Figure 3 shows the pruned CCFG. Here, Node 9 (repre-
senting Task C) is pruned using Rule A.

Analyzing CCFG to identify tasks that satisfy one of
these rules necessitates maintaining the live sync blocks
along with their scope information. For this, we maintain a
synced-scope list while generating the CCFG, which stores
the scopes of live sync blocks.

The outer variables can be passed as an argument to the
root function / task. Usually programmers ensure that the
calls to such functions are enclosed by sync statements
as it ensures safety while maintaining simplicity. If all call
sites from which the root function is invoked are enclosed
by sync statements, then all the outer variable accesses
passed as argument to the root (parent) function is safe. Our
compiler add such root (parent) function to synced-scope
list. This ensures that the compiler identifies all accesses
to outer variables that are passed as arguments to the root
function as safe.

B. Identifying Unsafe Uses

Next step of our analysis works on the pruned CCFG to
identify potentially dangerous OV accesses due to lack of or
improper use of synchronization variables. This step makes
use of an abstraction called Parallel Program State (PPS)
which represents an execution-time program state partial
ordering [4] is used to identify the potentially dangerous
outer variable accesses. We may have numerous possible
PPS-es if we consider all possible serialization of the nodes
in CCFG. Instead of considering all possible PPS-es, we
can conservatively consider all possible serialization of
synchronization events (abstracted to sync nodes and task
edges in CCFG). A write (writeEF) on a synchronization
variable in synchronization node j, can be paired with a
corresponding read (readFE / readFF) in node k, if in any of
the CCFG paths the value written in node j can be consumed
by the read in node k at run time, giving a partial ordering
of the nodes in CCFG similar to Lamport’s time-stamp [4]
(A signal-wait pair with writeEF modelled as a signal and
readFE modelled as a wait).

Formally, a PPS is identified by:
1) A set of sync nodes called Active Sync Node (ASN)

set, which represents the sync nodes which are next
in line to be executed

2) A table storing the state of all synchronization vari-
ables at the PPS called the state table (ST) and



3) A set of outer variable accesses which are safe, Safe
Set (SV).

4) A set of all outer variable accesses (OV) which
must have happened before reaching the current PPS,
excluding the set of outer variable accesses in SV.
For any given PPS, the OV ∪ SV set contains all
outer variable accesses which must have happened
before the last synchronization event in the execution
path taken.

SV ∩ OV = φ.

In Figure 3, each row in the table represents a possible
PPS. At time stamp 0, we have three sync nodes (Nodes 2,
4, 7) available for execution (PPS 0). The PPS 0 contains
sync nodes 2,4,7 will be available in ASN set. Both the OV
set and the SV set of the PPS 0 are empty. A sync node can
be executed if we can apply one of the below stated rules.

Rule 5 (SINGLE-READ). A read on a single variable is
visited if the current state of the variable is full.

Rule 6 (READ). A read of a sync variable can be visited
if the current state of the variable is full. The state of the
variable is changed to empty.

Rule 7 (WRITE). A write on single or sync variable
can be visited if the current state of the variable is empty.
The state of the variable is changed to full.

Of these, Node 7 cannot be executed since the current
state of doneA$ variable was empty. The subset of ASN
nodes which can be executed next, is termed as the candidate
set. We can apply WRITE rule on Nodes 2 to 4. Every
application of one of the rules on the current PPS with
a non-empty ASN set results in a different PPS which is
appended to the work-list. We proceed by applying WRITE
rule on Node 4 (Si = 4). This updates the state table entry of
doneA$ from EMPTY to FULL. We add the outer variable
accesses between the previous sync node (Sprev = the root
node) and Si (Node 4) into the OV set. The path contains
three nodes (Nodes 0, 1, 4) and contains two outer variable
accesses (x in Nodes 1 and 4) which are added to the OV
set (the subscript in OV set in Figure 3 refers to the Node
corresponding to the access). Before adding an outer variable
access into OV set, the variable access is searched in both
the OV set and the SV set to avoid duplicate additions. Once
node 4 is executed, we move forward in Task A, and sync
node 5 is now added to the ASN set (PPS 1).

In PPS 1, the candidate set includes Nodes 2 and 7 only.
A PPS with an empty ASN set (sink-PPS), denotes we
have visited all synchronization events which are part of
an execution path (PPS 4 in Figure 3). Figure 3 shows one
possible execution path. We recursively follow all possible
execution paths in the execution tree, one path for each of
the nodes available in candidate set. For example, { (2, 4,

5, 7) , (2, 4, 7, 5) , (4, 2, 7, 5) , (4, 2, 5, 7) } are a few
of the possible sync-node execution paths where the use of
variable x in Node 2 is safe.

In CCFG, the last sync node (readFE/writeEF/writeFF)
encountered in a path inside the parent scope for an outer
variable x is classified as the Parallel Frontier of x (PF(x))
in that path. If there are multiple paths from the start of the
parent scope to the end of the scope, there can be multiple PF
nodes one for each path. In Figure 2 the set PF(x) contains
a single Node 7.

Property 1. A statement that accesses an outer variable
x, is potentially unsafe, if there exists an execution path
serialization where the corresponding Parallel Frontier node
is executed before the statement.

The parallel frontier represents the last synchronization
point to which all the OV accesses can synchronize. The
Parallel Frontiers can change based on the CFG path chosen
in the parent task. As soon as a PF(x) node becomes part
of the candidate set of a PPS, all the accesses to variable x
in the OV, which were synchronized before PPS are cleared
from the OV set and added to the safe set (SV) as those
accesses are accepted to be safe in the current path of
execution. In Figure 3, the Node 7, becomes part of the
candidate set in PPS 1. The outer variable accesses in OV
set (x1, x4) are moved to SV, in the next PPS (PPS 2).

Once a node (Si) is processed, we generate a new PPS
by finding the successor of the processed node in the CCFG
and appending it to the remaining sync nodes in the previous
ASN set. We repeat until no new PPS can be generated. A
PPS with an empty ASN set is called the sink PPS. The outer
variable accesses in OV set at sink PPS, were added after
the PF(x) was available for execution and hence there exists
an execution path where these accesses can happen after
the end of scope of the variable. All outer variable accesses
which are part of OV set at sink PPS, are deemed unsafe and
reported to the user. In Figure 3 the outer variable access
x2 was added after execution of PF(x) (Node 7) making
it a potentially dangerous access of variable x. If lines 14
and 15 in the example program were to exchange position,
the generated graph would have had the synchronization
variables of Nodes 4 and 5 swapped. In the resultant CCFG,
we can only follow a single execution path (Node 2 → Node
4 → Node 5 → Node 7), and all the outer variable accesses
would have been added to the OV set before the PF Node
7 ca be executed. This would make all accesses to variable
x safe.

C. Algorithm

The algorithm for identifying the unsafe variable accesses
(checkForUnsafeUse) is provided in Figure 4. In lines
5-10, we report the potentially dangerous variable accesses
to the users.
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SL: filled single variable List
ppsWL: PPS Worklist.

while(! ppsWL.size() == 0):
pps <- ppsWL.pop()

if pps.ASN == φ:
∀ evi ε pps.OV:
Throw warning( evi )

∀ evi !(visited):
Throw warning( evi )

continue
∀ Si ε pps.ASN:
//SINGLE READ
∀ Si.syncVar ε pps.SL:
sli.add(Si)

if sli.size() > 0:
findNewPPS(ppsWL, sli, pps, FULL)

∀ Si ε pps.ASN:
// READ
if Si.syncVar.op == writeEF &&
pps.status(Si.syncVar) == EMPTY:
findNewPPS(ppsWL, Si, pps, FULL)

// WRITE
else if Si.syncVar.op == readFE &&
pps.status(Si.syncVar) == FULL:
findNewPPS(ppsWL, Si, pps, EMPTY)

Figure 4: Algorithm for finding unsafe accesses. Procedure
checkForUnsafeUse iterates over the PPS work-list and
reports the unsafe access points.

Since the SINGLE-READ rule reflects reading a single
variable that is already in the full state, the synchroniza-
tion event is non-blocking. Also, the SINGLE-READ rule
applied to a sync node does not block other nodes in the
current ASN set to be processed by applying the same
rule. To maintain correctness, we apply rule SINGLE-READ
whenever possible as a bunch, before proceeding to apply
the READ and WRITE rules. The rest of the non blocking
synchronization events can also be incorporated similar to
SINGLE-READ. Lines 11-16 in checkForUnsafeUse
handle SINGLE-READ, the non blocking synchronization
event.

The findNewPPS procedure (displayed in Figure 5) gen-
erates new PPS and updates the OV set. The findNewPPS
procedure also updates the ASN set, the state table (Lines
7 to 16) and the OV set (Lines 18-21) of the new PPS . If
the current executed node is a Parallel Frontier of a given
variable x, then we move all accesses of the variable x in
OV set to safe set (SV) (Lines 23-26). The newly generated
PPS, is appended to the work-list (Line 30).

If multiple branches are present, different PPS-es are
generated with each of the possible branches (Lines 7 - 12).
All newly available begin tasks are added to the list of
paths searched for new sync nodes.

Optimization: As an optimization, we merge two or more
PPS-es if their ASN sets and the state tables (ST) are
identical. In the merged PPS the OV set will be union of

L# findNewPPS(PPSWL,sV,pps,state)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

sV: set of sync nodes visited
state: new state.
(partialSet,OV,sT)<-(pps.(ASN,OV,sT))
partialSet -= sV
sT[sV.syncVar] <- state

∀ Si ∈ sV:
Sj <- nextSyncNode(Si)
if Si to Sj contains branches:

∀ bl in branches:
findNewPPS(PPSWL, sV+ bl − Si,

pps, state);
if Si to Sj contains begin:

∀ tl in new begin(s):
sV.append(tl)

partialSet.append(Sj)
// update OV set

∀ Si ∈ sV:
∀ Nk from Sprev to Si:
if Nk !(visited) :

OV = OV ∪ Nk.OV
// update safe set
∀ Si ε partialSet:
//check if PF(x) is in candidate set
if canVisitNext(Si, sT)
&& Si ε PF(x):

ev(x) -> safe //xsafe set

(newpps.(ASN,ev,sT))<-(partialSet,ev,sT)
ppsWL.append(newpps)

Figure 5: findNewPPS updates the work-list with new
PPS, and updates the safe accesses on encountering a parallel
frontier. Sprev represents the previous sync node, in the path
we encountered Si.

the original OV sets. Since the ASN set and the state table
are identical, the candidate set of the original PPS-es are
also equivalent. The safe set (SV), of the combined PPS
will be the intersection of the original SV sets. The PPS is
set to unprocessed if at least one of the original PPS was
unprocessed.

The analysis does not maintain the candidate set of PPS
as it can be easily generated when required, using the ASN
set and the state table. The algorithm can identify a variable
access evi as unsafe in more than one execution path. Since,
we are interested only in finding the dangerous accesses, the
algorithm removes the newly identified dangerous access evi
from further analysis.

D. Conditional Branching

Consider Figure 6 which presents a Chapel code where
we have branches inside begin tasks (Line 7). The branch
condition (the value of flag in Figure 6) could be unknown
at compile time and our analysis conservatively consider
all possible paths that can be chosen at runtime, while
generating the PPS. Figure 7 presents the CCFG of the
program along with the various PPS obtained.
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config const flag = true;
proc multipleUse() {

var x: int = 10;
var done$: sync bool;
// Task A
begin with (ref x) {

if(flag) {
// Task B
begin with (ref x){
writeln(x);
done$ = true;
done$;

}
}
done$ = true;

}
done$;

}

Figure 6: Chapel code with multiple paths and rules. If the
flag is true and the branch is taken the access of variable x
in Line 10 in Task B may be potentially dangerous.

At run-time we can either take or skip the if-branch. We
generate the PPS initially, considering the if condition (PPS
0 in Figure 7) and latter one omitting the if condition (PPS
8). Both are maintained at time-stamp 0. While considering
the if condition, at stage 0, we have two possible applications
of Rules 3 and 2 (Nodes 3,7 and Nodes 5,7) with the nodes
in the ASN set. Both possibilities are separately considered
which further generates multiple PPS-es. When we visit PF
node (Node 7), in PPS ID 4 (to generate 5) the OV set
is empty and hence none of the accesses of x are made
safe. Later, (PPS ID 5) when the algorithm visits Node 3,
the outer variable access in Node 3 (Line 10 in Figure 6)
is added to OV list. This access is identified as unsafe we
reach sink-PPS (PPS ID 7).

IV. IMPLEMENTATION

The proposed compiler analysis is implemented as a com-
piler pass on the latest Chapel compiler. The analysis works
on Chapel intermediate code representation. The compiler
code with our pass is available online on github [5]. All
potentially dangerous accesses identified by our analysis
are reported to the user as a compiler warning for manual
verification and rectification.

A. Scope Limitations

Currently our analysis does not support loops which
contain a sync node or a begin task edge inside the
loop body. Loops with just the outer variable accesses are
treated as a single node if no synchronization event happens
between the variable access in the first iteration and the
variable access in the last iteration in the current task. The
rest of the loops are subsumed into a single node in the
generated CCFG.
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done$

0

PF={x}

1

2

5

done$
8

4

done$

6

else edge

done$

3
OV={x}

2

Synchronization Node

Node ID

Normal Node

done$ ReadFE done$

done$ WriteEF done$

PF={x} Parallel Frontier Set

Parallel Frontier Node

Control Edge
Begin Task Edge

OV={x} Outer Variable Set

ID TS ASN OV states Remark

0 0 {3,5,7} φ done$=E IF,
rule#3−−−−−−→
Node#3

1

rule#3−−−−−−→
Node#5

4

1 1 {4, 5,
7}

{x3} done$=F PF(x),
r#2−−−→
N#7

2

2 2 {4,5} φ done$=E
r#3,2−−−−−→
N#5,4

3

3 4 φ φ done$=E safe

4 1 {3,7} φ done$=F PF(x),
r#2−−−→
N#7

5

5 2 {3} φ done$=E
r#3−−−→
N#3

6

6 3 {4} {x3} done$=F
r#2−−−→
N#4

7

7 4 φ {x3} done$=E unsafe

8 0 5,7 φ done$=E ELSE,
r#3,2−−−−−→
N#5,7

9
9 2 φ φ ,, safe

Figure 7: The CCFG and the PPS set generated for the
Chapel program given in Figure 6. The PPS-es 1-7 represent
the case where the IF branch is taken where as PPS-es (8,9)
represent the case where the IF branch is not taken.

Of the multiple non-blocking synchronization events, only
SINGLE-READ is currently handled. The atomic integers
can also be used to synchronize begin tasks with the
parent task. Writes to atomic integers can be taken as a non-
blocking fill event (state changing from EMPTY to FULL),
and the corresponding read can be considered equivalent to
SINGLE-READ event. In the current implementation of the
analysis, the atomic integer read-writes are not handled.

V. RESULTS

For evaluation purpose we use the the test suite available
with Chapel version 1.11 [3], which had many programs
with potentially dangerous outer variable accesses. Our



Table I: Results of running use-after-free check in Chapel
version 1.11 test suite.

Total test cases 5127
Test cases with begin tasks 218
Test cases with Use-After-Free
warnings

38

Number of warnings reported 437
True positives 63
Percentage of true positives 14.4%

observations are given in Table I. From the list of memory
accesses reported by our compiler, we were able to manually
verify 63 potentially dangerous memory accesses in the test
suite.

The low percentage of true positives (14.4%) reported is
due to the non-handling of atomic integers, non blocking
synchronization events (other than readFF) and lack of
complete inter procedural analysis.

VI. RELATED WORK

In this section we discuss the related work, including some
works on static MHP analysis and static race detection, both
closely related problems.

In X10 [6] and HJ [7], the async (equivalent to begin)
tasks which have references to outer memory locations are
enforced to be enclosed within a finish block (equivalent
to sync block). This approach of blocking the parent task
can be heavily restrictive and inefficient at times, especially
when the parent task has a sufficient amount of work
after the sync statement. Also, the sync block has no
effect on the tasks defined outside its scope, prompting the
programmers to create multiple sync blocks which can
result in high run-time cost.

Compile time identification of concurrent program issues
is a challenging and fascinating area. Multiple works in the
field of compile time may-happen-in-parallel (MHP) [8]–
[12] and static race detection [13]–[16] have been proposed
recently with great success.

We could perform our analysis using an efficient, sound
and precise MHP oracle by relying on the following prop-
erty: any outer variable access is potentially dangerous if the
end of the variable scope may-happen-in-parallel with the
access or any preceding statement. The MHP oracle will be
inefficient if the accesses may happen after the parent task
exited.

Different variations of CCFG are used (like segment
graphs [8], Parallel Reachability Graph [12]) for capturing
and comprehending the program control flow for the static
MHP analysis.

By restricting the analysis to an environment containing
only the sync blocks and begin tasks the CCFG for MHP
analysis can be comprehended into a tree structure (Program
Structure Tree (PST) [10], [11]) where the begin task
nodes can be attached as a child node to the immediately

enclosing sync block. In MHP analysis for a thread parallel
model [9] a Thread Creation Tree (TCT) is constructed
where multiple call sites of the same thread are maintained
separately to retain the context sensitivity of the analysis. In
our model we copy the entire sub-graph of the embedded
function (in-lining) at all call sites to maintain the context
sensitivity. Parallel Reachability Graph (PRG) [12] main-
tains the target task (spawn and merge) information along
with each node which helps reduce the individual query time
of MHP for each node to O(V+E) where V is the number
of vertices in PRG and E the number of edges. None of the
above mentioned algorithms handle point-to-point synchro-
nization, allowing them to simplify the representation graphs
and provide polynomial-time guarantee on MHP algorithms.
In segment graphs [8] the parallel tasks are further divided
into segments to improve the precision of the MHP analysis.

Static race detection is another well studied area which
has some overlapping with the outer variable detection. For
example, Lockset based algorithms [13], [15] developed for
static race detection can be used to optimize our state table
of synchronization variables. The full and empty states along
with synchronization variable names can be hashed into a
set of virtual locks which need to be acquired to execute the
blocking synchronization event. The function summarization
techniques used in [14] can be used to extend the precision
of the inter-procedural analysis for non nested function calls.

VII. CONCLUSIONS

We proposed a partial inter-procedural compiler pass in
Chapel to identify access to variables that could happen after
the base task has exited the scope of the variable, rendering
the address void. Such accesses are potentially dangerous
and must be avoided. We have discussed the generation
of a CCFG and parsing the CCFG to identify improperly
synchronized variable accesses that can happen after the
Parallel Frontier (PF) of the variable. This will help the
users to identify the potentially dangerous access and add
synchronization statements to ensure the safety. In future,
we would like to extend the analysis to handle loops and
atomic integers. The analysis can be extended to optimize
the amount and position of synchronization points required,
and identify potential deadlock points.
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