
Compiler Enhanced Scheduling for OpenMP for
Heterogeneous Multiprocessors

Jyothi Krishna V S and Shankar Balachandran

Presented by: Jyothi Krishna V S

IIT Madras

January 19, 2016

1/21

Overview

• big.LITTLE
• HMP Scheduling in big.LITTLE
• CES for big.LITTLE
• Mathematical Modelling
• OpenMP

• for construct
• sections construct
• Thread Migration

• Results
• Conclusion

2/21

big.LITTLE

Cortex A15/A57
Cortex A7 /A53

Cache Coherent Interconnect

L2 Cache L2 Cache

GPU

Peripheral InterconnectMemory

big.LITTLE System Design

• Asymmetric Multicore Architecture
from ARM

• Targets mobile platforms which has
strict power constraints

• big-LITTLE migration (30µS) less
expensive than DVFS state transition
(50− 100µS)

Core Types Cortex-A7 Cortex-A15
Pipeline simple 8-stage in-order out-of-order, multi-issue
Frequency 600 - 1300 MHz 800 - 1900 MHz
Speed 1.9 DMIPS [?] 3.5-4.01 DMIPS

Instruction Set Thumb-2

3/21

big.LITTLE Scheduling: HMP Scheduling1

Cortex A15 Cortex A15 Cortex A15 Cortex A15

Cortex A7 Cortex A7 Cortex A7 Cortex A7

8 Asymmetric Cores

HMP
Scheduler
Linux Scheduler
Aware of big and
LITTLE Cores

Thread down-migrated
Down migration Limit

Up migration Limit

Thread up-migrated

100%

Core Uti-
lization

Software Threads

I II III IV V VI

• Intergated in Linux kernel Complete Fair Scheduling (CFS)
• Scheduling based on history of utilization
• Threads with higher utilization scheduled in big
1http://www.arm.com/files/pdf/Heterogeneous_Multi_Processing_Solution_of_-

Exynos_5_Octa_with_ARM_bigLITTLE_Technology.pdf
4/21

OpenMP API

• In C,C++ and FORTRAN.
• Team of threads executing parallel regions created by master.
• Barrier synchronized.
• Work sharing construct: unit of work executed by one of the
threads.

• omp_for: N iterations executed by the team. Iterations
allocated based on static,dynamic or guided scheme.

• omp_sections: set of sections, each executes once by one of the
threads. Random allocation.

• omp_single: One of the threads executes the contents inside
the construct.

5/21

CES for big.LITTLE

• OpenMP works well for SMP.
• Aim: Asymmetry aware compiler for reducing execution time
and power consumption.

• Key Idea: Reduce the disparity in individual thread running time.
• Parallel-segment bounded by barriers.
• Optimize each parallel-segment separately.
• Running time of parallel-segment = running time of longest
running thread.

6/21

Mathematical Modeling

• Total running cost of a thread : T (ct) = TOP(ct) + TMEM(ct).
- ct is core type.

• TOP(big)/TOP(LITTLE) lower compared to
TMEM(big)/TMEM(LITTLE)

• For multiple paths (branches): we take the largest cost.
• Value unknown at runtime : very high cost.
• The cost of a thread (once core is fixed) :
wl = select(T (big),T (LITTLE)).

• Objective :wlim = min(maxi ,j∈team|wl(i)− wl(j)|)

7/21

for Construct
• Current scheduling policy in HMP

• Static : Thread migration and core under utilization
• Dynamic : Multiple allocation and Heavy contention
• Guided : Dynamic with varying chunk size

Static
(25 each)

Barrier wait

Underutilized Cores

t0 t1 t2 t3P
A
R
A
L
L
E
L
F
O
R

Thread migration
Chunk allocation

big

LITTLE

40 Iterations executed by core

50

50

10
10

40

40

20

20

Dynamic

Heavy Contention, Multiple Allocation

P
A
R
A
L
L
E
L
F
O
R

Single

Worklist

t0 t1

8/21

CES: Scheduling for Construct
• Initial thread to core scheduling fixed
• Each thread given a private worklist
• Initial iteration count based on the core type and iteration cost

40

40

20

20

A B C

Parallel
for

P
E
M

big core

LITTLE core 40 Iterations in worklist
9/21

CES: for Construct - Stealing iterations
• Once finished start stealing form unfinished worklist
• Victim worklist is made shared
• Number of iterations stolen per chunk based on core types of
stealer and victim

40

40

20

20

44

44

16

16

A B

Parallel
for

Shared worklistItr stealing

P
E
M

big core

LITTLE core 40 Iterations in worklist
10/21

CES: for Construct for Nested Loops
• Special mechanism for for loops that are revisited
• Update initial division based on current execution

40

40

20

20

44

44

16

16

R
E
E
N
T
R
Y

A B C

Parallel
for

Shared worklistItr stealing

P
E
M

big core

LITTLE core 40 Iterations in worklist
11/21

sections Construct

• Hetrogeneous workload
• OpenMP: Random allocation of sections to threads
• In CES, allocation is divided into two different stage

• Affinity Allocation
• Normalization Allocation

12/21

CES : sections Construct - Affinity allocation

• Thread to core mapping is fixed
• A section i , allocated to each core based on its affinity, affi

• affi = Ti(big)/Ti(LITTLE)
• Lower affi higher chance to be scheduled to big

PEM

I
II
III
IV

wlim

Sections

Affinity Allocation

Affinity

13/21

CES : sections Construct - Normalization
allocation

• Normalization stage: reduce wlim between threads with largest
and lowest workloads

PEM

I
II
III
IV

IV

wlim

I

wl′im
wlim > wl′im

No
omp
for

Yes wlim = wl′im

Sections

Affinity Allocation

Normalization Stage

Affinity

Victim Section
14/21

Thread Migration
• For equal workloads, where thread workload is fixed
• We induce thread migrations
• minimum guarantee point (mgp): Thread ready to be down
migrated

• migration point: Time at which thread is up-migrated

t0 t1 t2 t3 Time

Config : 2 LITLLE and one big core

Down migration

Up migration

T1

T2

T3

big core

LITTLE Core

15/21

Implementation and Results

• Implemented using IMOP 2

• Different configurations of big and LITTLE cores tried.
• 4 big and 4 LITTLE cores.
• 2 big and 4 LITTLE cores.
• 2 big and 2 LITTLE cores.

• For different freqency configurations.
• NPB benchmarks
• EPAB: EP of NPB benchmark with re-visited for construct.
• sec: modified FSU sections benchmark added to demonstrate
section scheduling.

2Nougrahiya et al. IMOP : http://www.cse.iitm.ac.in/ amannoug/imop/
16/21

Execution time: big LITTLE config

• sec shows higher execution time due to affinity scheduling.
17/21

Power

• Affinity scheduling helps sec with huge gain in energy
consumption. 18/21

Varying frequencies of big and LITTLE

• f1 : big = 1.9 GHz LITTLE=1.3Ghz
• f2 : big = 1.9 Ghz LITTLE=1 Ghz

19/21

Varying frequencies of big and LITTLE

• IS initial division closer to optimal for f1.
• sec section allocation in f1 gives higher energy gains.

20/21

Conclusions

• Asymmetry aware compilation can produce a more efficient
execution environment.

• CES optimizes for OpenMP for both homogeneous and
heterogeneous workloads.

• On an average 18% improvement in execution time.
• 14% improvement in CPU power consumption.
• Future work involves handling more OpenMP constructs.
• Compilation for optimizing mobile applications.
• User handles for programmer to direct the optimizations.

21/21

