
Identifying Use After Free Variables in Fire and
Forget Tasks

Jyothi Krishna V S and Vassily Litvinov

jkrishna@cse.iitm.ac.in

IIT Madras

May 2, 2017

1/27

Overview

• Chapel
• begin tasks
• Use-After-Free Variables
• CCFG construction
• CCFG
• Parallel Program States: PPS
• Results
• Conclusion & Future works
• Choice of atomics

2/27

Chapel

• Chapel: programming language designed for productive parallel
computing.

• Portable design: bridging gap between HPC architectures.
• Unifying HPC units (replace CUDA, MPI, OpenMP).
• Task parallelism

Philosophy
a Good, top-down language design can tease system-specific
implementation details away from an algorithm, permitting the
compiler, run-time, applied scientist, and HPC expert to each focus
on their strengths

aSC ’16, Salt Lake

3/27

Task parallelism

• Task Parallelism Constructs:
• unstructured lifetime: begin tasks.
• structured lifetime: cobegin tasks,coforall tasks.

• Data synchronization:
• Non Blocking: atomic variables.
• Blocking: sync variables.
• single variables.

4/27

begin

• Creates a dynamic task with an unstructured lifetime.
• fire and forget
• Similar to async in x10.
• low synchronization an scheduling cost.

...
begin writeln (" hello ");
writeln (" world ");
...

Expected outputs :
hello world
world hello

5/27

Use-After-Free Variables

1x

SP

begin reference
...
{

x = 1;
begin (ref x)

{
if(x == 0)
print "chaos"

}
}
....
y = 0;

6/27

Use-After-Free Variables

begin reference

SP

...
{

x = 1;
begin (ref x)

{
if(x == 0)
print "chaos"

}
}
....
y = 0;

7/27

Use-After-Free Variables

0y

SP

begin reference
...
{

x = 1;
begin (ref x)

{
if(x == 0)
print "chaos"

}
}
....
y = 0;

8/27

sync and single

• Two properties: state and value.
• Two states: empty, full.
• Initialized with empty.
• Trailing $ to differentiate from rest of variables.
• sync

• Always Blocking
• On write: empty → full.
• On read: full → empty.
• one-to-one synchronization.
• Reusable.

• single
• Blocking if state is empty.
• On write: empty → full.
• one-to-many synchronization.

9/27

sync blocks
• Block synchronization.
• Similar to finish blocks in x10.
• All tasks declared inside the sync blocks should finish before the
parent task proceeds.

...
int x;
sync {

int y; // root task
begin(ref x, ref y) {
// x safe, y ?

}
. . .

}
...

10/27

General Algorithm

• CCFG: Concurrent Control Flow Graph.
• Extract out begin tasks and external variable (OV) uses into
CCFG.

• Traverse through CCFG.
• PPS: Parallel Program States.
• Partial Inter-Procedural analysis.
• collect all sync scope details at call site.

11/27

CCFG

• Bounded by a Concurrent Control Flow event.
• Encounter begin statement.
• Read/Write on a synchronization variable.

• nested function declaration.
• A CCFG Node

• Outer Variable Set: OV
• Synchronization type.
• Synchronization variable.

• Sub graph of nested functions expanded at call site.
• A live set of sync block scope is maintained.
• Safe OV accesses are removed.

12/27

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

proc outerVarUse() {
var x: int = 10;
var doneA$: sync bool;
begin with (ref x) {

writeln(x++);
var doneB$: sync bool;
begin with (ref x){

writeln(x);
doneB$ = true;

}
writeln(x);
doneA$ = true;
doneB$;

}
doneA$;
begin with (in x){

writeln(x);
}

}

• Task A Line 4.
• Task B: nested task, at Line 7.
• Task C: at Line 16. Pass by
value.

• sync variables:
• doneA$: Task A and Root Task.
• doneB$: Task B and Task A.

13/27

proc outerVarUse() {
var x: int = 10;
var doneA$: sync bool;
begin with (ref x) {

writeln(x++);
var doneB$: sync bool;
begin with (ref x){

writeln(x);
doneB$ = true;

}
writeln(x);
doneA$ = true;
doneB$;

}
}

0

7

doneA$

910

PF={x}

Root Task

Task C

8

10

1

4

5

OV={x}

OV={x}

doneB$

2

3

OV={x}
doneB$

Task A

Task B

doneA$

6

14/27

CCFG pruning

• Empty Nodes at end of each task.
• Safe Tasks:

1 A begin task that does not contain any nested task or refers to
any outer variable.

2 A begin task, which is immediately encapsulated by a sync
statement, provided all nested tasks are safe.

3 A begin task, in which the scope of all external variables
accessed by the task is protected by a sync block.

4 A begin task, in which all nested tasks are safe and is by itself
not referring to any outer variable.

15/27

PPS

A PPS:
• Active Sync Node (ASN): Nodes which are next in line to be
executed.

• State Table (ST): State of all live synchronization variables.
• Safe access set(SV): A set of outer variable accesses which are
safe.

• Live access set (OV): A set of OV accesses which must have
happened before reaching the current PPS, excluding the set of
outer variable accesses in SV.

• SV ∩ OV = φ.

16/27

Pruned CCFG

0

7

doneA$

PF={x}

Root Task

1

4

OV={x}

OV={x}
2

OV={x}
doneB$

Task A

Task B

doneA$

5

doneB$

PPS 0:
• ASN = {2, 4, 7}
• State Table

var state
doneA$ empty
doneB$ empty

• SV = φ

• OV = φ

17/27

Rules

Rule (SINGLE-READ)
A read on a single variable is visited if the current state of the
variable is full.

Rule (READ)
A read of a sync variable can be visited if the current state of the
variable is full. The state of the variable is changed to empty.

Rule (WRITE)
A write on single or sync variable can be visited if the current state
of the variable is empty. The state of the variable is changed to full.

18/27

Parallel Frontier

• Defined for OV, x : PF(x).
• The last sync node encountered in a path in parent scope.
• Multiple paths could lead to Multiple PF.
• The safety checks limited to PF.

Theorem
A statement that accesses an outer variable x, is potentially unsafe, if
there exists an execution path serialization where the corresponding
Parallel Frontier node is executed before the statement.

19/27

Execute Node 4

0

7

doneA$

PF={x}

Root Task

1

4

OV={x}

OV={x}
2

OV={x}
doneB$

Task A

Task B

doneA$

5

doneB$

PPS 1:
• ASN = {2, 5, 7}
• State Table

var state
doneA$ full
doneB$ empty

• SV = φ

• OV = {x1, x4 }

20/27

Execute Node 7

0

7

doneA$

PF={x}

Root Task

1

4

OV={x}

OV={x}
2

OV={x}
doneB$

Task A

Task B

doneA$

5

doneB$

PPS 2:
• ASN = {2, 5}
• State Table

var state
doneA$ empty
doneB$ empty

• SV = {x1, x4 }
• OV = φ

21/27

Execute Node 2

0

7

doneA$

PF={x}

Root Task

1

4

OV={x}

OV={x}
2

OV={x}
doneB$

Task A

Task B

doneA$

5

doneB$

PPS 3:
• ASN = { 5 }
• State Table

var state
doneA$ empty
doneB$ full

• SV = {x1, x4 }
• OV = {x2 }

22/27

Execute Node 5

0

7

doneA$

PF={x}

Root Task

1

4

OV={x}

OV={x}
2

OV={x}
doneB$

Task A

Task B

doneA$

5

doneB$

PPS 4:
• ASN = φ

• State Table
var state

doneA$ empty
doneB$ empty

• SV = {x1, x4 }
• OV = { x2 }
• Report x2.

23/27

Condition Nodes

• Static analysis.
• Both branches are explored separately.
• Loops:

• Just OV accesses: treated as single node with OV access
• Not handled:Loops containing begin or synchronization node.

24/27

Optimization & Limitations

• Merging PPS
• Identical State table.
• Equivalent ASN set.
• SV : SVi ∩ SVj .
• OV : OVi ∪ OVj .

• Mark already reported accesses.
• Clubbing variable accesses.
• Unsafe ∪ safe.
• Not Handled: Non blocking sync events: atomic

25/27

Results

Table: Results of running use-after-free check in Chapel version 1.11 test
suite.

Total test cases 5127
Test cases with begin tasks 218
Test cases with Use-After-Free warnings 38
Number of warnings reported 437
True positives 63
Percentage of true positives 14.4%

26/27

Conclusions

• Identify and report potentially dangerous OV accesses to the
user.

• Future: Inter procedural
• Future: Loops & recursion.
• Choice of synchronization.
• Child to parent task:

• sync, single, atomic integers.
• Broadcast:

• single, atomic integers
• Multiple child tasks:

• sync block, atomic integers.

27/27

