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CHOAMP: Cost Based Hardware Optimization
for Asymmetric Multicore Processors

Jyothi Krishna V S, Shankar Balachandran, and Rupesh Nasre

Abstract—Heterogeneous Multiprocessors (HMPs) are popular due to their energy efficiency over Symmetric Multicore Processors
(SMPs). Asymmetric Multicore Processors (AMPs) are a special case of HMPs where different kinds of cores share the same
instruction set, but offer different power-performance trade-offs. Due to the computational-power difference between these cores,
finding an optimal hardware configuration for executing a given parallel program is quite challenging. An inherent difficulty in this
problem stems from the fact that the original program is written for SMPs. This challenge is exacerbated by the interplay of several
configuration parameters that are allowed to be changed in AMPs. In this work, we propose a probabilistic method named CHOAMP to
choose the best available hardware configuration for a given parallel program. Selection of a configuration is guided by a user-provided
run-time property such as energy-delay-product (EDP) and CHOAMP aspires to optimize the property in choosing a configuration. The
core part of our probabilistic method relies on identifying the behavior of various program constructs in different classes of CPU cores
in the AMP, and how it influences the cost function of choice. We implement the proposed technique in a compiler which automatically
transforms a code optimized for SMP to run efficiently over an AMP, eliding requirement of any user annotations. CHOAMP transforms
the same source program for different hardware configurations based on different user requirement. We evaluate the efficiency of our
method for three different run-time properties: execution time, energy consumption and EDP, in NAS Parallel Benchmarks for OpenMP.
Our experimental evaluation shows that CHOAMP achieves an average of 65%, 28% and 57% improvement over baseline HMP
scheduling while optimizing for energy, execution time, and EDP respectively.

Index Terms—Asymmetric Multicore Processors, big.LITTLE, Optimal Hardware Configuration, Scheduling, Compiler Optimization
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1 INTRODUCTION

Advancement in processor technology with symmetric
multicore processor (SMP) scaling has resulted in large
increase in power consumption per unit of chip area. The
increasing importance of embedded systems has further em-
phasized the need for power-efficient computations while
designing the CPUs. The quest to reduce power consump-
tion has led to the fabrication of asymmetric multicore
processors (AMPs). big.LITTLE [1] from ARM and Tegra-
E1 [2] from NVIDIA are examples of AMPs.

AMPs are characterized by multiple types of cores.
However, unlike in CPU-GPU heterogeneous multicore pro-
cessors, all cores in AMPs generally implement the same
instruction set architecture (ISA) and the processes can
easily be migrated from one core type to another (similar to
SMP).1 In AMPs, a core type differs from another in terms
of frequency bandwidth, micro-architecture, and cache size,
among other aspects. These design choices are made based
on power and performance constraints. The cores in AMPs
can be logically divided into memory-centric cores (low-
power cores) and compute-centric cores (high-power cores).
The memory-centric cores have lower cache miss penalties
(based on CPU cycles), lower static and dynamic power
ratings, but at a cost of lower computational efficiency when
compared to the compute-centric cores.

When the AMPs are designed with a considerable fre-
quency difference between the powerful brawny cores and

• Jyothi Krishna V S is with IIT Madras. (jkrishna@cse.iitm.ac.in)
• Shankar Balachandran is with Intel Labs, Banglore.
• Rupesh Nasre is with IIT Madras.

1. Heterogeneous-ISA AMPs also exist. But we do not deal with those
in this work.

weaker wimpy cores, the selection of the optimal type of
cores turns out to be a trade-off between execution time
and power consumption [3]. One can choose the brawny
cores to run the threads faster and the weaker cores to
save on energy consumption. However, such a clear-cut
favorite between these two cores is absent when a composite
cost function such as Energy-Delay-Product (EDP) [4] needs
to be optimized for arbitrary programs. The issue gets
exacerbated due to variation in the frequencies the cores
of a type are clocked at. For instance, as the frequency
difference between different types of cores decreases, the
weaker (simpler) cores exhibit better execution time than the
powerful cores (with complex hardware optimizations) for
heavily memory-bound programs [5]. In a similar manner,
a powerful core may consume less energy than a weaker
core depending upon their operating frequencies and the
program characteristics. In a system with more than two
types of cores, where the computational power difference
between two adjacent classes of cores is not substantial,
the choice of an optimal core type becomes obscure. The
optimal solution point can easily shift to the next core type
with slight changes in the input program. Our work in this
article deals with identifying such an optimal configuration
for a program by looking at the program characteristics,
to be executed on a hardware with multiple core-types
with varying execution and power behavior. The notion of
optimality is also dictated by the user.

The application performance in a multicore environment
degrades considerably in the presence of intensive inter-
thread communication. In such cases, a power-efficient solu-
tion may discard using brawny (such as big) cores in favour
of a more power-efficient core type (such as LITTLE) with
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minimal or no performance penalty. On one extreme, for
strong CPU-bound programs, the performance of big cores
is twice as that of LITTLE cores [6]. On the other extreme,
for memory-bound programs, it is now known that a large
number of cores suffers from poor performance, with the
big cores incurring a higher penalty. For such programs, an
optimal number of cores is present [6] for each of the core
types for which we can obtain an optimal execution time.

We anticipate most real-world programs to have a com-
plex mix of characteristics (compute, memory, synchroniza-
tion). Therefore, an optimal configuration for such pro-
grams would need to make a judicious use of cores of
varying power (in our experimental setup, big and LITTLE
cores). This motivates us to holistically model scheduling
of parallel tasks, their assignments to various core-types,
and configuration of each core. We illustrate that parallel
systems exhibit wide variation in throughput based on the
scheduling, and how our model helps achieve near-optimal
schedule and configuration. While we illustrate the efficacy
of our model using big.LITTLE system, we emphasize that
our model is more general and applies to AMP configura-
tions having capability of several different types of cores.

In this paper, we propose a holistic system named
CHOAMP which makes use of a compiler, program anal-
ysis and transformation, regression analysis, and a runtime
scheduler. A close-knit interaction of these system compo-
nents helps us overcome the challenges arising due to un-
known variable values during compilation, and unknown
execution paths in the control-flow graph, and achieve a
more precise modeling of the parallel program. Together,
the components lead to a scheduling with appropriate core-
configurations leading to near-optimal performance (based
on the user-driven cost-function).

This article makes the following contributions:

• We design a Predictor that can predict the optimal
core-configuration, optimizing a user-provided run-
time cost-function for running OpenMP programs.
This involves an in-depth learning of all possible
hardware configurations and its response to parallel
programming elements. We have devised a super-
vised learning system where the runtime behavior
is captured using different regression functions. We
then use this knowledge-base to analyze the input
program to predict its runtime behavior.

• We build a compiler to transform OpenMP programs
to run with the predicted hardware configuration.

• We present an in-depth experimental study of
thread-scheduling in asymmetric multiprocessing
environment using a suite of NAS Parallel Bench-
marks [7]. We observe that the predicted hard-
ware configurations are mostly better than the base
case and very often close to the best. We also
show CHOAMP’s ability to work well with dy-
namic scheduling using the HMP [8] scheduler for
big.LITTLE and Compiler Enhanced Scheduling [9],
a custom scheduler for OpenMP for AMPs.

The sequel is organized as follows. Section 2 briefly
introduces HMP scheduling, CES and OpenMP. Section 3
explains our micro-benchmarking framework. Section 4 pro-
vides the theory behind CHOAMP. Section 5 provides de-

TABLE 1: Comparison of big and LITTLE cores

LITTLE core big core
Core Types Cortex-A7, A35, A53 Cortex-A15, A17, A57, A72

Pipeline 8-10 stage, in-order 15-24 stage, out-of-order
Frequency 400 - 1400 MHz (A7) 800 - 2000 MHz (A15)

Speed 1.9 DMIPS [10] 3.5-4.01 DMIPS
L1 cache size 32 KB 32-48 KB

ISA Thumb-2

TABLE 2: Peak and idle power consumption for different
frequencies of big and LITTLE in Watts.

Cortex A15 (big) Single Core Four Cores
Frequency Idle Peak Idle Peak

2.0 GHz 0.95 2.40 1.15 5.28
1.8 GHz 0.70 1.65 0.70 3.50
1.6 GHz 0.51 1.40 0.53 2.80
1.4 GHz 0.38 0.85 0.40 2.30
1.2 GHz 0.30 0.70 0.32 1.80

Cortex A7 (LITTLE) Single Core Four Cores
Frequency Idle Peak Idle Peak

1.4 GHz 0.20 0.50 0.22 1.40

tailed explanation of our proposed methodology. Section 6
discusses the implementation details including the compiler,
regression analysis and the transformation, and illustrates
the effectiveness of our approach using experimental evi-
dence. Section 7 compares and contrasts with the related
work, and Section 8 concludes.

2 BACKGROUND

In this section we introduce big.LITTLE architecture, existing
scheduling techniques, and OpenMP API.

2.1 big.LITTLE
In big.LITTLE from ARM, the powerful cores are called the
big (brawny) cores and the weaker power-efficient cores
are called the LITTLE (wimpy) cores. The number of big
and LITTLE cores may vary across implementations. A
comparison of big and LITTLE cores is given in Table 1.

Table 2 shows the idle and peak power consumption
of big.LITTLE cores obtained by running several micro-
benchmarks (cf. Section 3) on Odroid-XU3 board [11]. The
power consumption readings are from the onboard power
sensors. We collect the power consumption of a single core
by switching off the other cores in the cluster. We observe
that even for similar frequencies, the power consumption
of big is much higher than that of LITTLE. big cores also
perform better compared to LITTLE in case of compute-
intensive programs while running at the same frequency [5].

Earlier implementations of big.LITTLE relied on cluster
switching [12], which disallowed simultaneous usage of big
and LITTLE cores. Global Task Scheduling / Heterogeneous
Multicore Processor (HMP) scheduling [8] addressed this
issue, allowing all the cores to be used at the same time.
HMP scheduling is now integrated into the Linux kernel.

2.2 HMP Scheduling
HMP scheduler is a dynamic scheduler designed for
big.LITTLE systems based on the core CPU-cycle utilization
by a thread. Thus, threads with high CPU utilization are
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Fig. 1: Example of HMP dynamic scheduling.

executed on big cores, while others in LITTLE cores. A
thread that is currently scheduled in LITTLE thread can
be up-migrated to big core if the thread has a higher CPU
utilization than the up-migration limit. Similarly, a thread
that is currently scheduled in big can be down-migrated if
the current CPU utilization of the thread is lower than the
down-migration limit. The scheduler is invoked periodically
to keep high-performing threads in big.

Figure 1 shows an example HMP scheduling system
depicting percentage utilization of CPU cycles by different
threads in big and LITTLE. Thread I is showing high CPU
utilization (beyond a threshold) in a LITTLE core and the
thread can benefit and run faster if it is scheduled in a
more powerful core. Hence, the thread is scheduled for up-
migration. On the contrary, thread II is currently scheduled
in a big core with a low CPU utilization (below another
threshold). Down-migrating to a LITTLE core can reduce
energy consumption without much increase in its execution
time. The HMP scheduling is integrated into the Completely
Fair Scheduler (CFS) [13] in the Linux kernel.

2.3 CES
Compiler Enhanced Scheduling (CES) [9] is a static sched-
uler for OpenMP programs in AMPs. CES optimizes exe-
cution time by dividing the workload in the parallel region
based on the task workload and the processing power of the
core. The compiler estimates the relative speed-up of each
core type for executing the threads and divides the parallel
tasks accordingly such that the execution time of each thread
in a parallel region is normalized. The big cores usually
receive larger chunks of work compared to the LITTLE
cores. There is a dynamic part to CES which attenuates the
imbalance in the initial work distribution which might have
sneaked in due to the compile-time assumptions.

2.4 OpenMP API
We provide an introduction to a subset of OpenMP parallel
program features that are relevant to this paper. OpenMP
API is designed for shared memory parallelism in C, C++
and FORTRAN. Our focus is on C and C++ programs. Spe-
cial #pragma directives are used by the programmer to spec-
ify the intended OpenMP program behaviour to the com-
piler. A parallel program written using OpenMP API can
have interleaved sequential and parallel regions. A parallel
region, written inside #pragma omp parallel (omp parallel),
creates a team of threads, which may run in parallel to exe-
cute the code defined. The number of threads (N_THREADS)
in a team can be set using environment variables or using
OpenMP library calls (set_omp_num_thread()). For bet-
ter performance, a parallel program needs to exhibit more
parallelism and lesser synchronization.

The master thread is the initial thread which creates
the team on encountering the omp parallel region. In a
team, thread id 0 is the master thread, while the remaining
threads with ids 1..N_THREADS-1 are non-master threads.
The code specified under omp master (#pragma omp master)
is executed only by the master. The remaining threads in the
team skip omp master and continue executing the parallel
region. The parallel region is executed by master too.

Threads may have private variables, and the threads
can communicate via shared variables. Shared variables can
be synced to main memory using omp flush (#pragma omp
flush). The set of variables to be synced can be optionally
specified as parameters to omp flush. If the set is not
specified, the entire local cache of the thread is synced
with main memory before proceeding. A barrier construct
(#pragma omp barrier) is used to synchronize among all the
team threads. Each thread waits at the barrier until all the
other team threads reach the barrier. Barriers have implicit
flush operations on all the threads. There is an implicit
barrier at the end of every omp parallel construct.

Apart from these, OpenMP provides omp atomic
(#pragma omp atomic) and omp critical (#pargma omp critical)
for updating and accessing shared variables without incur-
ring a data race. omp atomic is used to atomically read,
write or update a single shared scalar variable at a time.
The omp atomic is applicable to only the immediately fol-
lowing statement, and a few binary operations are allowed
to be executed using this construct. An omp critical block
is executed by all the team threads in a mutually exclusive
manner. All unnamed omp criticals are considered identical
and maximum one thread can be in an omp critical region at
any time. Unlike in the case of atomics, there is no restriction
on the operations or the data types allowed inside a critical
region.

Work-sharing constructs define units of work distributed
across team threads. The work sharing constructs have an
implicit barrier at the end, which can be removed using
nowait clause. There are three work-sharing constructs avail-
able in OpenMP C/C++. First, omp for (#pragma omp for)
implements a parallel for loop in N_ITRS iterations, where
each iteration is executed once by one of the threads. The
iterations can be executed in parallel with other iterations.
The scheduling pattern of iterations to threads may be
specified using static, dynamic, or guided clauses. In static
scheduling, each thread is assigned equal-sized chunks of
iterations in a round-robin fashion, until there are no itera-
tions left. The size of a chunk, unless specified, is N_ITRS
/ N_THREADS. In dynamic scheduling, each thread is sup-
plied with a chunk of iterations on demand, until there are
no iterations left. Guided scheduling is similar to dynamic
scheduling except that the chunk size (whose initial value
can be specified using the optional parameter) starts off
large and decreases in later steps to improve load-balancing.
Dynamic and guided schedulings are often used for better
load-balancing but have higher overheads compared to
static scheduling. The chunk size plays an important role
in the performance of dynamic and guided scheduling. If
chunk size is very small, the scheduling overhead increases.
On the other hand, if chunk size is very large, the load-
imbalance is high. Therefore, a judicious setting of chunk
size often affects parallel performance.
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#define M 50000
int f(int *s, int A[], int cumSum[], int L)
{
int MAX = 0, localSum = 0, temp = L/128;
int N = M - temp;
#pragma omp parallel
{ int i, j;
#pragma omp for reduction(+:localSum)
for(i = 0; i<N ; i++) {

localSum += A[i];
cumSum[i] = 0;
for(j=0;j<N;j++) {

if(j<=i) cumSum[i] += A[j];
}

#pragma omp critical
{ if(MAX < A[i]) MAX = A[i]; }

}
}
return MAX;

}

Fig. 2: Running example: An OpenMP code to find the
maximum element and the cumulative sum of an array.

omp reduction (reduction(identifier :list)), is often used
with omp for to update a shared scalar variable on an
associative operation. The identifier is used to identify the
reduction operation and list contains one or more variables
on which the reduction operation might be applied inside
the region. We can have multiple omp reductions, one for
each operation in a single omp for.

In omp sections (#pragma omp sections), we have mul-
tiple sections each encapsulated by #pragma omp section
(single omp section), executed by one of the threads in the
team. Section scheduling is arbitrary. A single omp section
once scheduled to a thread will be executed by the thread.

omp single (#pragma omp single) contains a block of code
that is executed by only one of the randomly-selected team
threads. The rest of the threads jump to the end of the
omp single block and wait at the implicit barrier at the end
of the construct, unless nowait is specified.

Figure 2 provides an OpenMP code which computes the
cumulative sum and the maximum element in the array A.
Inside the omp parallel region (from Line# 6 to Line# 18) we
have an omp for (from Line# 8 to Line# 17) which iterates
over A. Location cumSum[i] stores the cumulative sum of
A’s elements from position 0 to i. Variable MAX stores the
maximum element of A. To avoid race conditions, MAX is
updated inside a critical region (from Line# 15 to Line# 16).
Variable localSum stores the sum of A’s elements and is
updated using omp reduction in Line# 10.

3 MICRO-BENCHMARKS

We now describe the generation of micro-benchmarks and
training of the prediction model. Our micro-benchmark
framework is inspired by EigenBench [14], a work on bench-
marking different Transactional Memory (TM) systems.

EigenBench describes a tool (EigenTool) which uses a
set of micro-benchmarks to analyze the efficiency of a TM
system. The micro-benchmarks are designed to test a set
of orthogonal application characteristics that form a basis

for transactional behaviour. Precise extraction of the Eigen
characteristics is a key step in designing the EigenTool.

3.1 Feature Identification
In CHOAMP, we identify a set of parallel program charac-
teristics in OpenMP (from hereon termed as prime features),
whose existence and intensity variations affect the runtime
behaviour of the program in an AMP environment. The
choice of prime features depends upon both the parallel pro-
gramming platform (OpenMP) constructs and the hardware
characteristics (in general, HMP; in our experiments, big and
LITTLE). Similar to EigenTool, we use a collection of set of
micro-benchmarks (one for each prime feature selected) to
carefully study the behaviour of all the available hardware
configurations and how each of the runtime cost functions
of choice is affected. This helps us identify the efficiency of
different hardware configurations of big.LITTLE. We use the
data collected from these micro-benchmark runs to train a
predictor, which is used to predict the optimal configuration
Obl for a given parallel program.

Each micro-benchmark is a valid OpenMP program gen-
erated with a known intensity vector (ivector) of the prime
feature set. Each value in ivector represents the intensity of
a prime feature as a fraction of the total ALU operations. By
varying the value of a single feature in ivector over a range
we create a set of micro-benchmarks whose run-time values
indicate its effect in different hardware configurations.

The selection of the set of program features should be
such that it covers all the important factors affecting the
runtime behavior of our test programs. A sub-optimal set
of features would result in an inaccurate predictor whereas
choosing a lot of non-influential features would increase the
training time of the predictor. The prime features can be di-
vided into language-independent and language-dependent
features. The language-independent features mostly revolve
around dissimilarity in the hardware features of big and
LITTLE. The language-dependent features vary across par-
allel programming models and across the parallel constructs
supported by them.

The language-independent features represent the basic
set of operations executed differently by different core types.
These include memory operations, branch operations and
data dependencies. Cache latencies and miss penalties of
the big cores are much higher than those of the LITTLE
cores. For instance, L2 latency for big is 21 cycles while for
LITTLE it is 10 cycles [5]. Thus, as we increase the number of
memory operations in the program the speed-up advantage
of big cores over LITTLE cores reduces. The amount and
density of the memory operations also play an important
role in determining a core’s performance. The big cores are
usually stacked with hardware optimizations such as out-
of-order execution, reorder buffers, and can withstand mul-
tiple cache misses. If the interval between two consecutive
memory operations is adequate enough, the effect of a stall
in big can be mitigated to some extent. Further, big cores
are usually equipped with larger caches. LITTLE cores, on
the other hand, have in-order execution and the pipeline
stalls on every non-cached memory access. To capture this
behaviour, we create multiple micro-benchmark programs
with the same amount of memory operations but with
different spreads of the load and store operations.
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We also vary the virtual address spacing between the
target address for consecutive memory operations from
adjacent locations (to mimic cache-friendly array accesses)
to purely random locations in a buffer larger than the L3
cache size (to mimic pointer based accesses which exhibit
low spatial locality). This helps us capture the effect of
memory accesses on different types of cores.

A branch misprediction can affect the ILP, and in turn,
a core’s performance. As we move from LITTLE to big,
the complexity and the number of pipeline stages increase.
This results in big cores incurring a higher penalty for
every branch misprediction. Similar to the memory opera-
tions, we generate a set of micro-benchmarks with different
spreads and intensities of branch operations. Our model also
considers the possible effect of false-sharing. The effect of
false-sharing becomes prominent when we consider using
smaller chunk for scheduling the omp for iterations hav-
ing store operations on array locations. This increases the
memory traffic, and thereby, memory latency.

The OpenMP specific features selected include bar-
rier constructs, omp criticals, omp flushes and omp for for
this work. The OpenMP constructs chosen as prime features
are based on their impact on inter-thread communication
and synchronization. As we increase the N_THREADS value,
the synchronization cost also increases. So, for high inten-
sities of barrier constructs, a larger value of N_THREADS
would suffer from higher execution time. In case of
omp criticals, more work done inside critical sections will
be advantageous for big cores. This is because we will be
able to execute the critical regions faster and thereby reduce
the critical section waiting time. On the other hand, larger
value of N_THREADS increases the waiting time penalty of
the system, leading to lower energy-efficiency. omp flush
is costlier for big than a normal memory operation as the
former blocks the pipeline until the flush operation is com-
plete. The effect of omp flush on LITTLE is not as severe
due to inorder execution. omp reductions have a similar
effect on big and LITTLE as the reductions use local flushes
at the end of the region to update values. CHOAMP also
needs to train for different kinds of scheduling and sizes
of omp for. Static scheduling would result in equal work-
distribution (assuming homogeneous workload in each it-
eration). big cores at high frequencies would execute their
workloads faster and reach the barrier. This would lead to
hardware under-utilization and thread migrations due to
HMP scheduling.

3.2 Using Micro-Benchmarks

The code for micro-benchmark generators is available on-
line [15]. We vary the intensity of the selected feature in
the micro-benchmarks in a practical range (based on the
analysis of various OpenMP benchmarks, namely, NPB [7],
and FSU OpenMP programs [16]), and record various run-
time parameters of interest. This is repeated for all the
hardware configurations. The micro-benchmarks are semi-
automatically generated to stress various performance as-
pects in the program. CHOAMP supports three cost func-
tions: execution time, energy and EDP.

For each prime factor, a benchmark set is executed with
the intensities of other prime factors being constant. We then

combine the outputs of a benchmark set into the following
equation. Since we have kept all other intensities constant
and assume that the dependencies between prime factors
are negligible we can generate the following equation

X ∗ ci = yTi (1)

Here, each row in the matrix X represents the intensity
of the prime factor in different powers starting from zero. ci
represents the coefficient vector for hardware configuration
i. The yi vector corresponds to the cost function values
recorded using the micro-benchmark set for hardware con-
figuration i. If we consider a linear relationship between the
prime factor and the cost function, the matrix X will contain
simply two columns (c0 ∗ x0 + c1 ∗ x = y).

Using a regression tool we can estimate the coefficient
vector. Such vectors are used by our Predictor to find y of an
unknown intensity of the prime factor in the input program
for each possible hardware configuration.

4 CHOAMP THEORY

CHOAMP employs a clustering-based approach for schedul-
ing iterations to cores. Thus, iterations that are clustered
together are scheduled together. The challenging aspect in
applying clustering to parallel programs is that a single
feature is often not sufficient to identify the cluster an
iteration belongs to. The overall performance of an appli-
cation is a complex interplay of several features such as
ALU operations, memory instructions, and synchronization
constructs. However, since an iteration needs to be executed
by a single core in our setup, it is imperative to identify the
most prominent feature which affects a given cost function.
The challenge gets exacerbated when multiple features are
prominent. Such scenarios demand prioritization over fea-
tures to identify the final assignment of an iteration to a core.
We first discuss our clustering approach in the context of
various program features in isolation, and then explain how
CHOAMP computes the final core-assignment combining
individual recommendations from each feature.

4.1 Branch Instructions

Arbitrary branch instructions reduce cache effectiveness,
and affect execution time. Executing branch instructions
generally consume more energy than usual ALU opera-
tions (cf. Table 7). Thus, all our cost functions (execution
time, energy and EDP) are directly affected by branches.
Scheduling branch-heavy iterations to big cores can lead to
their under-utilization and idling, and would also consume
more energy. Therefore, whenever the percentage of branch
instructions is higher than a threshold (determined by the
predictor based on microbenchmark results), it is beneficial
to cluster all such iterations to LITTLE cores.

4.2 Shared Data

Iterations accessing a lot of shared data should be scheduled
together. Such a clustering leads to better cache efficiency
and reduces inter-thread communication latency. A key
concern here is to choose the type of core to schedule the
iterations together. In our experience, it needs to be guided



6

by the frequency of memory operations (and other features
such as synchronization). For instance, for low memory
traffic, it is better to schedule iterations on big, and so on.

4.3 Memory Traffic Diversity
An interesting feature that affects scheduling is the diver-
sity of memory traffic. We observed that scheduling the
iterations with diverse memory demands together improves
performance. Also, contrary to the usual belief, scheduling
of iterations with high memory demand onto LITTLE leads
to inferior performance (when the cost function is execution
time). Instead, the performance is better if such iterations
are scheduled on big but with lower frequency.

4.4 Synchronization Instructions
Synchronization instructions play a crucial role in the ex-
ecution time as well as energy consumed by a parallel
program. CHOAMP models the behavior of three syn-
chronization constructs: atomics (omp atomic), reductions
(omp reduction) and critical (omp critical). The clustering
behavior differs across each of them. For atomics, if the
percentage (within an iteration) is beyond a threshold, the
iterations are clustered onto LITTLE, otherwise big. When
a medium type of core is present in an HMP system, the
iterations can be clustered on it based on another threshold.
The thresholds are suggested by the microbenchmarking
(Section 3). On the other hand, reductions involve thread
coordination. Hence, CHOAMP clusters the participating
iterations onto the same type of core. For execution time,
big is preferred. Critical section involves yet another consid-
eration. If iterations involve many critical sections (beyond a
threshold), CHOAMP prefers to schedule the corresponding
iterations sequentially. Otherwise, depending upon the cost
function, the iterations get clustered on different types of
cores. In particular, for execution time, CHOAMP prefers big.
For energy as the cost function, CHOAMP prefers LITTLE if
the critical section involves shared data. For EDP, CHOAMP
uses a combination of the above two rules. In case of barri-
ers, the primary considerations are the synchronization cost
and the barrier waiting time. When the number of barriers
increases and the cost function is execution time, CHOAMP
prefers a smaller number of cores. For energy as the cost
function, CHOAMP prefers LITTLE for executing the barrier
instructions. In the case of EDP, CHOAMP prefers a sym-
metric core system, where all cores have similar processing
power, thus reducing the overall barrier waiting time.

4.5 Putting Features Together
Individual feature vectors lead to independent suggestions
on the placement of iterations. However, depending upon
the program, sometimes, the suggestions may lead to con-
flicting placements. For instance, if the number of branch
instructions is high, the individual suggestion from the
rules in Section 4.1 would be to schedule the iteration on
LITTLE. However, in addition, if the memory traffic is high,
based on the suggestion from the rules in Section 4.3, the
placement would be on big. Therefore, it is imperative to
combine individual suggestions by appropriately prioritiz-
ing them. This leads to devising a weight-function to reach
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Fig. 3: Block diagram depicting the workflow of our frame-
work. The top half shows the training phase and the bottom
half shows various compiler stages in code-scheduling.

the final placement prediction. CHOAMP supports three
types of weight functions: linear, quadratic and Gaussian
(cf. Table 3), which we discuss next in more detail.

5 CHOAMP IMPLEMENTATION

We now discuss using micro-benchmarks for training the
predictor, finding the optimal Obl configuration and the
corresponding transformation of the program. The work-
flow of our technique is depicted in the block diagram of
Figure 3 and consists of primarily two phases. (i) Training
Phase, where we generate micro-benchmarks to train the
predictor for the selected program features and populate the
knowledge base. (ii) Compilation Phase, where we analyze
the input program and output the Obl configuration for
the input program. The compilation phase consists of an
optional Load Balancing phase where we transform the
input program to use existing load balancing techniques to
distribute the parallel workload among the cores in Obl. The
user can provide input on the selection of Predictor kernel
and the load balancing technique.

We explain the two phases in more detail below.

5.1 Training Phase

During the training phase, we run sets of micro-benchmarks
in various available hardware configurations and collect the
power, energy and runtime values. We use the Java Scien-
tific Library [17] provided by M. Flanagan to estimate the
coefficient values represented in Equation 1. The estimated
coefficients form input to our Predictor.

The Predictor combines the different prime planes (listed
in Section 3) of the source program using weighted Eu-
clidean distance to generate the combined cost of all the
prime features of the program.

Various regression techniques can be applied to Equa-
tion 1. For example, for linear regression, the equation boils
down to y = c1 ∗ x + c0 for each prime factor x. In
CHOAMP, we have used three different regression functions
for the prediction model: (i) Linear, (ii) Quadratic, and
(iii) Gaussian. All three models are trained using the same



7

TABLE 3: Cost calculation for various Regression functions.

Regression Cost Estimation
Linear ΣN

e=0we ce[1]*wl(e) + (ΣN
e=0 we * ce[0])/ N

Quadratic ΣN
e=0we * ( ce[1]*wl(e) + ce[2]*wl(e)2 + ce[0]) / N)

Gaussian ΣN
e=0we Ye / (

√
2 ∗ π ∗ sde*(e(wl(e)−Xe)/sde)

2
))

N: Number of prime Features
c[*]: coefficients from regression model using micro-benchmarks
we: weight of prime feature
wl(e): intensity of the prime feature in the program
Ye: Y scale prime feature in the program
Xe: Mean of prime feature in the program

micro-benchmark set. From our experiments, we observe
that different regression functions have different levels of
accuracy based on how well they are able to fit each feature
and the runtime intensity of the feature. CHOAMP with pre-
dictor trained with Linear (Quadratic, Gaussian) regression
is termed linear-CHOAMP (quadratic-CHOAMP, gaussian-
CHOAMP respectively).

The cost function calculation for different regression
training functions is shown in Table 3. The cost function
is computed as a weighted sum of values for each prime
vector. The wl vector contains the intensities of the prime
factors. N denotes the number of trained prime features. The
regression functions estimate the relationship between the
prime factors and the selected cost function. we provides dif-
ferential weight for different prime features. Linear regres-
sion (cl) uses a linear combination of ivector. The quadratic
regression (cq) is more powerful, as the cost function is
modelled as a quadratic function of ivector. Though the
function is more powerful, cq is more susceptible to errors
such as overfitting. The gaussian regression (cg) assumes
all the prime factors to be in a continuous domain. Using
weighted sum, we can vary the importance of an individual
prime feature by varying the weights. The choice of the
predictor is guided by a global flag.

Table 4 shows the different prime features trained for
CHOAMP. We show the study of memory micro-benchmark
set in Table 5 for a subset of the hardware configurations
trained. For instance, configuration 0L4b(2) contains zero
LITTLE and four big cores, with big’s frequency set to 2.0
GHz. The table presents the average values of the runtime
cost function obtained, for the highest (1.0) and the lowest
ivector (0.1) values for memory operations. The ivector
values for the remaining prime vectors are kept constant.
For memory operations, as we can see for execution time,
big is advantageous over LITTLE; for energy, LITTLE is
preferred; and for EDP, LITTLE is advantageous beyond a
threshold.

Table 6 shows the average values of the runtime cost
function obtained, for the highest (3.05E-5) and the lowest
(4.77E-10) ivector values for the barrier micro-benchmark
set. We can see that for higher intensities of barriers, using
more cores is expensive on all fronts.

Table 7 shows the average values of the runtime cost
function, for the highest (0.3) and the lowest (5E-4) ivector
values for the branch micro-benchmark set. We see that
for a very high percentage of branch instructions, LITTLE
outperforms big in terms of execution time.

TABLE 4: Prime features chosen

Prime
Feature

Description ivector value

Branch
operations

Percentage of Branch opera-
tions

varied from
0 to 30%.

Memory
operations

Trained for multiple densi-
ties of Load and Store op-
erations for same number of
memory operations.

varied from
50 - 100%.

Atomic
operations

percentage of omp atomic
operations

varied from
0 to 15%.

Barriers Number of barriers in a par-
allel region. Trained for mul-
tiple densities of barriers for
same number of barriers.

from
0 to 3.05E-03%

Critical
sections

Percentage of operation in-
side critical section when
compared to entire workload
of a parallel section

from
0 to 6.10E-03%

False
sharing

Taken as a percentage of
all STORE operations in the
parallel region.

Trained for
different strides
with potential
false sharing.

Flush
operations

Percentage of memory
locations flushed using
omp flush.

varied from
0 to 5%.

Reduction
operations

Percentage of reductions in a
parallel region as a factor of
all ALU operations

varied from
0 to 25%.

TABLE 5: Runtime values obtained for memory micro-
benchmark set for intensity values: high=1.0, low=0.1.

Config. Exec. time in s Energy in J EDP in Js
high low high low high low

4L0b 5.70 2.01 5.82 1.82 33.31 3.67
0L4b(2) 2.71 0.62 15.71 2.88 42.57 1.81
4L2b(2) 2.33 0.67 13.43 1.46 38.56 2.55
4L4b(2) 1.80 0.47 11.39 2.43 20.93 1.15

5.2 Compilation Phase

First step in the compilation phase involves analyzing the
input program to extract intensities of the prime features. A
typical OpenMP program can have multiple parallel regions
interleaved with sequential processing. In this work, we
focus on optimizing only the parallel regions, which allows
us to analyze each parallel region separately. CHOAMP
creates a concurrent control-flow graph (CCFG) for the input
program. All the basic-blocks in the CCFG are associated

TABLE 6: Runtime values obtained for barrier micro-
benchmark set for intensity: high=3.05E-5, low=4.77E-10.

Config. Exec. time in s Energy in J EDP in Js
high low high low high low

4L0b 5.45 5.27 5.26 4.86 28.68 25.65
0L4b(2) 1.91 1.78 8.55 8.09 15.35 21.09
4L2b(2) 3.87 2.26 17.49 10.20 67.75 23.02
4L4b(2) 43.66 1.80 231.42 11.99 1.0E4 22.59

TABLE 7: Runtime values obtained for branch micro-
benchmark set for intensity: high=0.3, low=5E-4.

Config. Exec. time in s Energy in J EDP in Js
high low high low high low

4L0b 0.84 0.98 1.23 1.05 1.03 1.03
0L4b(2) 1.13 0.63 4.83 4.62 5.24 3.05
4L2b(2) 0.68 0.52 4.65 4.35 3.12 2.80
4L4b(2) 0.61 0.42 5.88 4.45 2.49 3.30
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with a workload (wl) vector. The wl vector is assigned the
intensity of each program feature of interest in the block.
Each basic block appends its wl to that of its parent block
for computing the combined effect.

CHOAMP traverses the CCFG to compute the intensity
of each prime feature in the input source program. For
precise and effective modeling of OpenMP programs, we
need to have an inter-procedural workload accumulation.
CHOAMP creates a call-graph to store all the function calls
with hooks to the call-sites. The call-graph analysis is a two-
step process. The first step is intra-procedural, wherein indi-
vidual functions are analyzed in isolation. The second step is
inter-procedural which takes into account the calling context
of a function. To handle the context, CHOAMP topologically
sorts the call-graph and processes functions in that order.
Use of recursion generates a potentially infinite number of
contexts as the recursion depth is unknown at compile-time.
CHOAMP currently does not handle recursion.

The intensity of each prime characteristic is stored as
the fraction of the total number of prime characteristic
operations performed in the code. After extracting features,
CHOAMP passes the generated wl vector to the trained
prediction model and calculates a cost function value for
each selected hardware configuration for the runtime cost
function of interest. The model then predicts a hardware
configuration having the least cost function value to run the
parallel region.

When multiple parallel regions exist, CHOAMP com-
putes the Obl configuration for each omp parallel region
separately. However, it is difficult in big.LITTLE to apply dif-
ferent hardware configurations to different parallel regions
of the same program. Composing wl vectors of multiple
parallel regions may result in different intensities of the
prime characteristics, leading to suboptimal Obl configura-
tion. CHOAMP prioritizes the configuration associated with
the most parallel region (dictated by wl vectors), with the
assumption that it would dominate the cost function.

The example in Figure 2 contains a single parallel region
with an embedded omp for with N iterations. The wl vector
values are collected as a function of N for some of the prime
factors (such as memory operations and omp critical) and
are independent of N for some other prime factors (such as
barriers). As a result, the accuracy of the Predictor would
depend on the value estimation of N. If the runtime value
of N is unknown, CHOAMP equates it to its largest known
constant value in the program.

5.3 Estimating Values of Unknown Variables

The precision of the estimated wl vector is critically affected
by the unknown variables. Especially in the context of our
analysis in CHOAMP, knowing range of variable values
can considerably improve prediction accuracy, leading to
improved prediction. There are primarily two kinds of
unknown variables that plague effectiveness of CHOAMP:
loop bounds, and variables used in conditional statements.
We handle these as follows. We first preprocess the source
code to collect the program constants and the variables of in-
terest; that is, loop bounds and variables used in conditional
statements. To keep the method effective and practical, we
choose to bucketize their values in exponential ranges. Thus,

TABLE 8: Value ranges with prominent binary operations

Operation Result range
i + j range(MAX(R(i)) + MAX(R(j)))
i * j range(MAX(R(i)) * MAX(R(j)))
i - j range(MAX(R(i)) - MIN(R(j)))
i / j range(MAX(R(i)) / MIN(R(j)))
i >> j i - MAX(R(j))
i % j R(j)
i = j MAX(R(i), R(j))
MAX(R(i)): Known maximum value in range i
range(k)): Range to which the value k belongs

we define a set of variable ranges (R) bounded by powers
of a selected base (such as 10) R(i) representing the variable
range to which the variable i belongs. A variable is expected
to be pushed into the range which would bound the largest
value the variable can attain during execution. The pre-
processing happens as below. First, the program constants
are pushed into a corresponding R with a flag to identify
the constant. All the statements updating the variables of
interest (loop bounds and those used in conditionals) are
processed, and the unknown variables are pushed into
the variable ranges based on their update values and the
expressions they are used in. CHOAMP currently models
binary expressions (which are more frequent) as shown in
Table 8. Finally, the remaining (unclassified) variables are
pushed into the largest non-empty variable range. After
such a bucketing, for a non-constant variable i, it assumes
the largest known value in the R(i) as the value of i.

For example, consider Figure 2. We have N, the variable
of interest which depends on variable L, which is un-
known. The initial unknown value L is put into the current
highest non empty bucket (R1E4−1E5 containing constant
M with value 50,000). The range of temp is estimated to
be R1E2−1E3 (range(MAX(R(L))), i.e., 50000/128)). Now,
range for N is (range(M - MIN(R1E2−1e3), i.e., 50000-1000)
as R1E4−1E5. Hence the value of N is estimated as 50000
which is the maximum known value in the range of N.

Using the variable ranges, CHOAMP proceeds to find the
cost function value for each hardware configuration trained,
using the functions described in Table 3.

5.4 CHOAMP Example

We revisit our example in Figure 2 to demonstrate the
efficiency of our Predictor. Figure 4 shows the normalized
runtime characteristics with the normalized cost function
values calculated by the three regression functions. We use
iLjb(k) notation to represent a hardware configuration with
i number of LITTLE cores, j number of big cores, where
each big core has a frequency of k GHz. The LITTLE core
frequency is kept constant at 1.4 GHz. All the values are
normalized with respect to those of the 4L4b(2) configura-
tion. We observe from the figure that the values predicted
by CHOAMP mostly follow the same pattern as the scaled
runtime values, which helps in identifying the best configu-
ration.

Table 9 shows the runtime values of the example for the
Obl configuration predicted by each Predictor along with the
Obl configuration predicted by each Predictor and the best
hardware configuration. We can see that the Predictors are
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Fig. 4: Runtime characteristics of the example in Figure 2 for different hardware configurations.

TABLE 9: The runtime values of Obl configuration predicted
for different cost functions for the example given in Figure 2.

Base case Manual CHOAMP predictions
4L4b(2) Best case Linear Quadratic Gaussian

Time 6.34 5.18 5.36 6.34 5.36
in s 4L4b(1.6) 4L4b(1.8) 4L4B(2) 4L4b(1.8)

Energy 30.16 12.52 12.52 12.52 12.52
in J 4L0b 4L0b 4L0b 4L0b

EDP 191.13 116.91 116.91 121.85 166.33
in Js 4L4b(1.4) 4L4b(1.4) 4L4b(1.2) 4L2b(1.2)

able to predict hardware configurations that are close to the
optimum configuration.

5.5 CHOAMP Scope

CHOAMP continues to be under active development. It
currently supports almost all of the OpenMP features in-
cluding various parallel sections, scheduling strategies, and
synchronization constructs. However, there are a few non-
trivial aspects which CHOAMP does not support: nested
parallelism, recursion, and OpenMP tasks.

OpenMP allows nested parallelism where each member
in the team can create a new set of threads, where the creator
thread assumes the role of the master in the new team.
The newly created team will have its own local barriers
and pragma constructs. Even though nested parallelism
theoretically increases the effective number of threads, it is
going to be limited by the hardware configuration.

As discussed earlier, recursion poses issues with respect
to a potentially infinite number of calling contexts. In our
study with NPB, none of the nine benchmarks uses nested
parallelism or recursion. Therefore, we leave recursion han-
dling as a future work.

We restrict the discussion of CHOAMP to the subset
of synchronization constructs that are prominent in the
benchmarks we have chosen for initial learning [16], [18]
and NPB [7]. Constructs such as OpenMP tasks introduce
new challenges. With tasks, all the work in a parallel region
is not available at once. Also, the tasks can switch threads
(untied tasks). These are dependent on runtime which makes
it difficult to estimate and model the ivector for prediction.

While considering a different AMP hardware, we need
to update the language-independent prime features. For
example, consider a distributed AMP (i.e., with NUMA ar-
chitecture). The stalls induced by the shared-data (including
false-sharing) can be costlier than say, branch misprediction

stalls. Also, barrier synchronization may have a different
cost for the same base configuration, but with a different set
of cores chosen based on the selected cores’ locations (due to
NUMA effect). We can address these issues by incorporating
core locality as a part of the hardware configuration. This
can increase the number of possible configurations to be
trained for. However, CHOAMP can be useful as a starting
point for designing a Predictor for the AMP.

We use regression model as our learning algorithm as
a simple model that can capture the effects of the prime
factors, with low modelling and training costs. We are able
to capture the essence of the program features with the
regression model, though more complex and costly machine
learning kernels such as support vector machines and neu-
ral networks can replace the regression model with better
efficiency while learning for more complex prime features.

Even though the model has been explained using
OpenMP, the underlying CHOAMP methodology is appli-
cable in a wider setting: (i) identifying the prime features,
(ii) learning a Predictor over the prime features based on
the parallel programming model and AMP, and (iii) us-
ing the trained Predictor for predicting the best possible
configuration available with the AMP. For example, when
using pthreads, the possible set of language dependent
prime features could include pthread create, pthread join
and pthread exit. These features pose similar challenges as
OpenMP tasks and would require more exhaustive sets of
micro-benchmarks to train a good Predictor.

5.6 Handling Imbalanced Workload

The inherent power imbalance in Asymmetric Multicore
Processors makes it difficult to balance running times
of threads in parallel programming platforms such as
OpenMP. Current compilers are tuned for optimizing the
code for SMP hardware with an equivalent amount of
workload given to each thread between two barriers.

Since the big cores can usually execute threads much
faster than the LITTLE cores, often the threads that are
initially scheduled in big cores reach the barrier earlier
than the threads that are scheduled in LITTLE core. Once a
thread running on big reaches the barrier, its CPU utilization
reduces and the HMP scheduler would eventually down-
migrate it to LITTLE. On the other hand, a thread running
on LITTLE and yet to reach the barrier may be up-migrated.
This can lead to overall hardware under-utilization. The as-
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TABLE 10: Test environment description

Hardware Odroid XU3 [11]
Processor Samsung Exynos 5422
Microbenchmark scripts Python version 2.7
Parallel platform OpenMP [21]
Frontend compiler IMOP [20]
Backend compiler gcc 4.8.2
Regression tool Java Scientific Library [17]
OS LUbuntu 16.04
big frequencies tested 2GHz, 1.8GHz, 1.6GHz, 1.4GHz, 1.2GHz
Configurations tested 4L4b(4 LITTLE&4 big),4L2b,4L0b,2L2b,0L4b

sociated performance penalty is high if there is an imbalance
in the number of different kinds of cores.

In omp for, static scheduling is most preferred be-
cause of its low overhead. In AMPs, however, static
scheduling often results in load imbalance and frequent
thread-migrations, which can considerably hamper per-
formance [19]. CHOAMP employs multiple load-balancing
mechanisms to reduce this inefficiency, as we discuss below.

• Using dynamic or guided scheduling: dynamic and
guided scheduling mechanisms offer relatively bet-
ter overall load-balancing. A naı̈ve usage of these
mechanisms incurs additional scheduling overhead,
but it can be mitigated by choosing an appropriate
chunk-size with the help of the predictor, to reduce
the number of scheduling points.

• Using custom scheduling: Here, CHOAMP first fixes
a core-to-thread mapping and then divides the itera-
tions based on the speed-ratios of various types (such
as big-to-medium and medium-to-LITTLE). Note that
these ratios are not fixed, but vary based on the core
frequencies chosen by the predictor. For our experi-
ments, we use CES [9] for the custom scheduling.

6 EXPERIMENTAL EVALUATION

We now evaluate the effectiveness of CHOAMP.

6.1 Setup
We use IMOP [20], a source-to-source transformation and
analysis framework for OpenMP. The benchmark programs
are pre-compiled using gcc 4.8. Precompilation expands
the preprocessor directives to increase accuracy and reduce
compilation time. For regression training, we use Java Scien-
tific Library (JSL) provided by Flanagan [17]. The JSL is used
offline to generate the coefficients of regression functions
which are plugged into IMOP framework. The evaluation
system configuration details are presented in Table 10. For
our experimentation purposes, we have trained for a sub-
set of the numerous hardware variations achievable with
big.LITTLE: (i) vary the number of big cores from 0 to 4
(step size of 2), (ii) vary the number of LITTLE cores from
0 to 4 (step size of 4), and (iii) vary the frequency of big
cores from 1.2 GHz to 2 GHz (step size of 0.2 GHz). For all
the experiments we fix the frequency of LITTLE cores to 1.4
GHz, as found empirically to provide benefits.

We use NPB OpenMP benchmarks [7] for evaluating
CHOAMP. Characteristics of NPB benchmarks relevant to
this work are presented in Table 11. The number of barriers
listed corresponds to the explicit barriers in the code. The

TABLE 11: Characteristics of NPB Benchmarks

Name Lines parallel omp for barriers omp critical
BT 2653 2 70 38 0
CG 550 5 24 23 0
DC 2478 1 0 0 1
EP 169 1 1 1 1
FT 775 2 7 11 1
IS 285 2 2 2 1
LU 2658 3 36 27 1
MG 828 6 11 22 1
SP 2206 2 78 65 0

TABLE 12: Obl selected for NPB benchmarks computed by
linear regression.

Benchmark Configuration chosen for a cost function
Execution Time Energy EDP

BT 4L4b(1.8) 4L0b 4L4b(1.4)
CG 0L4b(1.8) 4L0b 0L4b(1.4)
DC 4L4b(1.8) 4L0b 4L4b(1.4)
EP 4L4b(1.8) 0L4b(1.2) 4L4b(1.6)
FT 4L4b(1.8) 4L0b 4L4b(1.6)
IS 4L4b(1.8) 4L0b 4L4b(1.4)
LU 4L2b(2.0) 4L0b 0L4b(1.4)
MG 4L4b(1.8) 4L0b 4L4b(1.6)
SP 0L4b(1.8) 4L0b 0L4b(1.4)

number of lines of code includes the code only from the
main program, and not from any libraries.

Our experiments are carried out on a big.LITTLE system
where the HMP scheduler is enabled. We use the default
hardware configuration as the baseline, which is 4L4b(2) (4
LITTLE cores running at 1.4 GHz and 4 big at 2 GHz).

6.2 Predicted Configurations and their Performance
Table 12 shows the Obl configurations predicted by
CHOAMP when trained using the linear regression. For ex-
ecution time as the cost function, all big cores are chosen in
all but one benchmark (LU), which follows our expectation.

CG and SP have many barriers; this prompts CHOAMP
to choose fewer cores (no LITTLE cores). While trying to
optimize for energy consumption, CHOAMP chooses a core
configuration which is closer to the lower end of the spec-
trum. Thus, when the cost function is energy, CHOAMP
mostly prefers the LITTLE cores, except for EP. EP is a highly
parallel benchmark with very little synchronization cost and
high ILP, allowing the big cores to execute instructions much
faster than the LITTLE cores, prompting CHOAMP to choose
big over LITTLE for energy consumption. While training for
a more complex cost function like EDP, a more balanced
configuration is chosen for most of the benchmarks. The
Predictor always tends to choose a hardware configuration
which lies in-between the one chosen for execution time and
energy in the spectrum. Most of the configurations chosen
have the maximum number of cores possible to exploit
maximum parallelism. For CG and SP, CHOAMP selects
fewer cores because of the high synchronization present
in the benchmarks. The chosen frequency of big cores is
similar to that of LITTLE. This helps in load-balancing (most
omp fors in NPB use static scheduling).

Table 13 compares the execution time, energy
consumption and EDP values obtained for baseline
with the corresponding values for the program optimized
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TABLE 13: Runtime cost function values of base case (4L4b(2)) compared with Obl runtime cost function

Benchmark Execution time in s Energy in J EDP in Js
baseline Obl baseline Obl baseline Obl

BT 295.10 258.64 1446.92 486.95 426987.66 240872.73
CG 7.29 3.46 34.74 10.67 253.29 44.54
DC 113.59 122.42 363.78 124.38 41320.86 32228.11
EP 18.52 15.62 89.61 53.00 1659.82 1159.98
FT 12.60 8.33 61.61 26.23 776.19 214.03
IS 1.83 1.73 9.49 4.12 17.36 8.65
LU 235.95 169.89 1178.02 280.41 277954.89 32355.37
MG 4.71 4.08 23.63 10.68 111.35 73.06
SP 74.36 0.18 358.73 0.22 26676.79 0.06
Mean 84.88 64.93 396.28 110.74 86195.36 34106.28
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Fig. 5: Runtime characteristics of EP for different hardware configurations. Smaller is better.
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Fig. 6: Runtime characteristics of CG for different hardware configurations. Smaller is better.
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Fig. 7: Runtime characteristics of FT for different hardware configurations. Smaller is better.

for the cost function by CHOAMP (with configurations
mentioned in Table 12). For CG and SP, we witness a
large improvement in the execution time as CHOAMP
chooses fewer cores for executing the programs with
high synchronization costs. SP, in fact, shows even better
runtime for fewer threads (2 and 1) outside the trained
spectrum. Since the baseline has high power consumption,
we see a huge improvement in energy consumption of
CHOAMP-optimized programs. A similar trend is observed
when the cost function is EDP. This clearly indicates the
efficacy of CHOAMP.

A closer look at some benchmarks: Now, we look into a few

of these benchmarks in detail. Figures 5–7 show scaled exe-
cution time, energy consumption and EDP values obtained
for EP, CG and FT for different hardware configurations
we trained for. The hardware configurations are inversely
sorted first in terms of the total number of cores and then
in terms of the big core frequency. The first entry in the
graphs represents the value corresponding to the base case
(4L4b(2)) to which the rest of the values are normalized. In
all the cases, CHOAMP predicts the configuration with the
lowest cost function value as per the model. In the plots, we
have marked the configuration selected by CHOAMP.

First, we look into EP (Figure 5), a highly parallel
benchmark with very little synchronization inside a parallel
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region. Due to its inherently parallel nature, the execution
time reduces with increasing number of cores and core
frequency. Linear-CHOAMP is able to accurately predict
the best configuration for running EP while optimizing
for execution time. High parallelism in EP helps higher
hardware configurations to get better EDP values. Both
linear-CHOAMP and gaussian-CHOAMP are able to predict
hardware configuration close to the optimal.

As shown in Table 11, CG has a large number of barriers
which increase the synchronization costs considerably (Fig-
ure 6). This restricts the ability of the program to scale well
with the number of processors. As a result, CG performs
better in terms of execution time and EDP for fewer cores.
Linear-CHOAMP is able to predict hardware configuration
that is very close to the optimal value.

In terms of program characteristics, FT (Figure 7) lies in
between EP and CG. The benchmark is fairly scalable. The
best configuration for execution time lies at the high end of
the spectrum, while that for EDP lies in the middle. Linear-
CHOAMP and gaussian-CHOAMP predict a similar trend
with all Obl predictions showing substantial improvement
in the cost-function values.

6.3 Cost Functions
Figure 8 shows the overall percentage improvement (reduc-
tion) in execution time for CHOAMP-compiled programs
over the baseline. We see an average improvement of 28%
in execution time with linear-CHOAMP. DC contains very
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few program-specific prime features. SP and CG (for linear-
CHOAMP) show high improvement in execution time for
a smaller number of cores (4), due to its larger number
of barrier instructions which induce high synchronization
costs for more cores. Gaussian-CHOAMP predicted all LIT-
TLE cores for LU (4L0b), resulting in a higher execution
time. The improvements using quadratic-CHOAMP (2.7%)
and gaussian-CHOAMP (3%) are marginal.

Figure 9 shows the overall percentage improvement
(reduction) in energy consumption for CHOAMP-compiled
programs over the program running in the base case. We
see an average improvement of 65% in energy consump-
tion while using linear-CHOAMP over the nine benchmarks
in NPB. Both quadratic-CHOAMP (average of 50%) and
gaussian-CHOAMP (67%) are also able to provide very
good improvements in energy consumption values. The
high level parallelism of EP prompted quadratic-CHOAMP
to choose all big cores (0L4b(2)) for energy consumption.
But high power consumption of big cores has resulted in
negative improvement in energy consumption.

Figure 10 shows the overall percentage improvement
(reduction) in EDP values for CHOAMP-compiled programs
over the program running in the base case. We see an
average improvement of 58% in EDP for linear-CHOAMP
over the nine benchmarks in NPB. For SP, the EDP value
obtained for CHOAMP-compiled program is negligible com-
pared to the base case, and hence reported as 100% improve-
ment (corrected to two decimal places). Quadratic-CHOAMP
predicted the base configuration for MG for optimizing EDP,
resulting in zero improvement. Quadratic-CHOAMP sug-
gested all big (0L4b(2)) for EP. High power consumption of
big cores leads to a higher EDP than the base case. However,
linear-CHOAMP provides considerable benefits.

The current model can be strengthened by incorporating
other variations of the regression kernel. For instance, we
studied regression using non-overlapping rolling windows.
Our preliminary evaluation did not provide significant im-
provements in terms of the performance of the predicted
configuration. However, a detailed study of such variants
would be an interesting future work.

6.4 CHOAMP and CES
In this subsection, we analyze the compatibility of CHOAMP
with a dynamic scheduler named CES (Compiler Enhanced
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various NPB Benchmarks (CES + CHOAMP). The base case
is CES compiled program for 4L4b(2.0) configuration.

Scheduler) [9]. Figure 11 shows the average percentage im-
provement in execution time of (CHOAMP + CES)-compiled
code over CES-compiled code. If CHOAMP outputs the
program for a homogeneous hardware configuration (for
example CG and SP while using linear-CHOAMP), the CES
compiler is left ineffective and will not change the code.
We see an average of 14% improvement in execution time
while using linear-CHOAMP when compared to CES com-
piled code. CES transforms the omp fors to create separate
worklist for each thread and balances the workload in the
worklist based on the core computing power. This results in
lower waiting time at the barriers. As a result, we observe
lower gains in CHOAMP execution time with SP and CG
while comparing with CES compiled code. For EP with
quadratic-CHOAMP (0L4b(2)) and for LU with gaussian-
CHOAMP (4L0b(2)), the execution times increase consider-
ably.

Overall, we illustrate that CHOAMP offers considerable
benefits over the baseline, and allows a user to seamlessly
optimize parallel programs for AMP.

7 RELATED WORK

Our scheme relies completely on compile time analysis, is
tested on real hardware, and does not require any extra
hardware support. A new hardware configuration can be
easily integrated into the existing model. We simply need
to train the Predictor to learn about the new hardware
configurations. Here, we discuss relevant related works on
selecting optimal hardware configuration and scheduling in
heterogeneous multicore processors.

Majority of the work on scheduling in AMP relies on
dynamic analysis as precise information of runtime pa-
rameters is available [22], [23], [24], [25], [26]. There have
been a few works that rely on compile-time profilers for
making scheduling decisions [27], [28]. Compared to the
dynamic schedulers (which operate at execution time), static
schedulers scale better with the number of cores as well
as program complexity [27]. With dynamic scheduling, the
schedulers are often required to be fast and lightweight.

Some of the dynamic scheduling techniques proposed
for normalizing the execution time of threads [26], [27], [28]

can be easily integrated into CHOAMP in place of HMP and
CES. Chen and John [28] proposed a dynamic scheduling
technique to map the inherent program characteristics and
their corresponding resource demands to the characteristics
of different core types in AMPs. The proposed method
combines the program characteristics and available core
configurations into a unified solution space using weighted
Euclidean distance. We also use Euclidean distance to com-
bine the effect of individual prime factors to estimate the
overall cost of the program.

Former research in this area has focused on schedul-
ing in AMPs to improve execution time [22], [24], energy
consumption [29], [30], [31], or a function of both [32],
[33]. These works propose novel techniques to exploit the
hardware heterogeneity for optimal performance and/or
power consumption. However, most of the proposals are
tied to optimizing one of the runtime features and are in-
flexible towards the user-requirements. CHOAMP optimizes
a runtime cost-function provided by the user.

A few works have looked into dynamic frequency scal-
ing along with thread scheduling [32], [34] for optimal
performance measures. Annamalai et al. [32] proposed a
scheduler which dynamically chooses between swapping
two threads and changing the frequency to optimize for
throughput per Watt.

Multiple works have relied on regression for estimating
execution time and power [3] with a good amount of accu-
racy. A few of the dynamic algorithms designed for AMPs
which use similar basic concepts are discussed below. Bias
scheduling [24] presents a dynamic scheduling technique
where a thread is given a big or LITTLE core bias based on
the speedup ratio. PIE (Performance Impact Estimation) [22]
shows that taking the ratio of ILP (Instruction Level Par-
allelism) and MLP (Memory Level Parallelism) provides a
good estimate of the relative performance of the big and the
LITTLE cores.

Taylor et al. [35] have proposed to use SVMs to map
OpenCL kernels to heterogeneous multicores. The proposed
method is implemented in LLVM and trained for multiple
CPU-GPU configurations. The CPU configurations are all
homogeneous in nature which might not provide the best
hardware configuration as demonstrated in Figures 5–7.
Memti and Pllana [25] have proposed to use simulated an-
nealing to reduce the solution space exploration to find the
optimal system configuration in a heterogeneous system.

8 CONCLUSIONS

In this work, we propose a probabilistic model CHOAMP,
with a micro-benchmark trained Predictor which predicts
the best asymmetric hardware configuration for a given cost
function. This eliminates the manual effort involved in the
trial-and-error method for tuning for an optimal configu-
ration. CHOAMP is flexible to different user needs as the
same program can be transformed for optimizing execution
time, energy consumption, and EDP. Experimental results
with NAS Parallel Benchmarks show 28% improvement in
execution time, 65% improvement in energy consumption
and 58% improvement in EDP with Linear-CHOAMP over
the baseline.
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In future, we plan to add support for more cost functions
such as execution time given an energy or power budget,
energy consumption given a limit on execution time, as a
factor of the base case values. Also, we would like to in-
troduce more hardware configurations permitted by AMPs
such as variable cache sizes and memory bandwidths. We
would also like to consider the inter-dependencies of the
prime factors which would require generating training sets
for multiple prime features and using more sophisticated
learning models.
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