
CHOAMP: Cost Based Hardware Optimization
for Asymmetric Multicore Processors

Jyothi Krishna V S, Shankar Balachandran and Rupesh Nasre

jkrishna@cse.iitm.ac.in

IIT Madras

Feb 13, 2017



CPU: Power Wall

CPU

Processor

ProcessorProcessor

Processor Processor

CPU

• Moore’s Law hit the Power Wall
• Not practical to keep on increasing the Frequency
• Multicore environment
• Parallel Programming to keep on reaping benefit

1/29



High Static Cost

ProcessorProcessor

Processor Processor
Friendly Tasks

CPU

Friendly Tasks
Memory

Static

Dynamic

Energy Consumption Energy Consumption

DVFS

ProcessorProcessor

Processor Processor
Friendly Tasks

CPU

Static

Dynamic

Energy Consumption Energy Consumption

Friendly Tasks
Memory

• CPU Friendly Tasks: Mostly ALU operation (active CPU cycles)
• Memory Friendly Tasks: Mostly memory/ Branch operations
• DVFS: reduced the negative effect
• Still had high static cost

2/29



Asymmetric Multicore Processors (AMPs)

Static

Dynamic

Processors

Friendly Tasks
CPUProcessorProcessor

Friendly Tasks
Memory

Energy Consumptiom Energy Consumptiom

• CPU friendly tasks to big & powerful cores
• Memory friendly tasks to small & power efficient cores

3/29



AMP: Issues with Multithreaded Program

• Which type of core to run each thread?
• Optimal task to thread mapping of the cores?
• Does an AMP environment help? (Use one type of core at a
time)

• Number of resources of each type?
• Optimal Frequency configuration for each core type?
• Can answers to all above questions change with change in Cost
Function?

• Execution time
• Energy Consumption
• EDP etc.

4/29



AMP: CPU Friendly Threads

big & Powerful cores LITTLE & Power efficient cores

Execution Time

EDP

Energy

Optimal Solution space

• Execution Time: Powerful Cores
• EDP: Mostly Powerful Cores
• Energy: Uncertain

5/29



Memory Friendly Threads

big & Powerful cores LITTLE & Power efficient cores

Execution Time

EDP

Energy

Optimal Solution Space

• Execution Time: Uncertain
• EDP: Mostly Weaker Cores
• Energy: Weaker Cores

6/29



Intermediate Threads

big & Powerful cores LITTLE & Power efficient cores

Execution Time

EDP

Energy

Optimal Solution Space

• Execution Time: Uncertain
• EDP: Uncertain
• Energy: Uncertain

7/29



Multiple CPU Types

Powerful cores Power efficient cores

Execution Time

EDP

Energy

Optimal Hardware Configuration

• Execution Time: Uncertain
• EDP: Uncertain
• Energy: Uncertain

8/29



CPU Types + DVFS + NUCA ...

Powerful cores Power efficient cores

Execution Time

EDP

Energy

Optimal Hardware Configuration

• Relative Power: Unknown
• Execution Time: Uncertain
• EDP: Uncertain
• Energy: Uncertain

9/29



Optimal Hardware

Given an input program, a user selected cost function and the
possible hardware configurations, can we find an optimal hardware
configuration which can run the program with minimal cost function.

• Static/Compile time: CHOAMP
• Dynamic: Execution time decisions : HMP Scheduling1

• Hybrid: Compile Time Instrumentation and Runtime Decision:
PIE2, CES

1http://www.arm.com/files/pdf/Heterogeneous_Multi_Processing_Solution_of_Exynos_-
5_Octa_with_ARM_bigLITTLE_Technology.pdf

2Van Craynest et al, Scheduling Heterogeneous Multi-cores Through Performance Impact
Estimation (PIE)

10/29



Static v/s Dynamic Scheduling

• Static
• Unknown variables
• Unknown Task-Thread Mapping
• Hardware Resource Reservation

• Dynamic
• Runtime overhead
• Scalability of the engine
• Context switching with other processes
• Accurate knowledge of workload

11/29



Static Scheduling
• Unknown Loop bounds: Represent workload as a function of
unknown variables

• Wasted (wait?) CPU cycles for synchronization constraints
• Handle large solution space (Hardware configurations)

C
os

t
F

u
n
ct

io
n

ALU Operations

M
em

or
y

O
per

at
io

ns

C
ontrol operations

HC1

Optimal Hardware Configuration

HC3

HC2

• A Trained Regression engine to identify the optimal solution
from the solution space

• Feature set selection: relevant features 12/29



Feature Selection

• Low level : based on Hardware dissimilarities of different types of
cores

• ALU operations
• Memory operations
• Branch operations
• False sharing

• High Level: synchronization constructs provided by the language
(OpenMP)

• Barriers
• Atomic
• Critical sections
• Flush operations
• Reduction operations.

13/29



CHOAMP: Training Phase

Training

Hardware
configurationsFeature

vectors
Features

Knowledge
base

Cost
functions

T
rain

in
g

Microbenchmarks

14/29



CHOAMP: Compilation Phase

Knowledge
base

Obl

Predictor
Load

Balance

Feature
vectors

User Input

Transformed
program

Input program

Obl
config

C
om

pilation

15/29



CHOAMP: The Big Picture

Training

Hardware
configurationsFeature

vectors
Features

Knowledge
base

Cost
functions

Obl

Predictor
Load

Balance

Feature
vectors

User Input

Transformed
program

Input program

Obl
config

T
rain

in
g

C
om

pilation

Microbenchmarks



Test Environment : big.LITTLE

Cortex A15/A57 Cortex A7 /A53

Cache Coherent Interconnect

L2 Cache L2 Cache

GPU

Memory

big.LITTLE System Design

Peripheral Interconnect

• Asymmetric Multicore Architecture
from ARM

• Targets mobile platforms which has
strict power constraints

Core Types Cortex-A7 Cortex-A15
Pipeline simple 8 stage in-

order
Out of Order,
multi-issue

Frequency 600 - 1300 MHz 800 - 1900 MHz
Speed 1.9 DMIPS 3.5-4.01 DMIPS
Instruction
Set

Thumb-2

17/29



HMP 3

Cortex A15 Cortex A15 Cortex A15 Cortex A15

Cortex A7 Cortex A7 Cortex A7 Cortex A7

8 Asymmetric Cores

HMP
Scheduler
Linux Scheduler
aware of big and
LITTLE cores

Thread down-migrated
Down migration Limit

Up migration Limit

Thread up-migrated

100%

Core
Utilization

Software Threads

I II III IV V VI

• Integrated in Linux kernel Complete Fair Scheduling (CFS)
• Scheduling based on history of utilization
• Threads with higher utilization scheduled in big
3http://www.linuxplumbersconf.org/2012/wp-content/uploads/2012/09/2012-lpc-

scheduler-task-placement-rasmussen.pdf
18/29



Implementation
• Hardware Configurations: Odroid XU3 4

• Core Configurations: 4L4b, 0L4b, 4L2b, 2L2b, 4L0b
• big Frequencies : 2GHz, 1.8GHz, 1.6GHz, 1.4 GHz, 1.2GHz

• Micro-benchmark generation: Python 2.7
• Dynamic Scheduling: HMP and CES 5 for dynamic load
balancing

• Analysis and Transformation: IMOP 6

• Regression Tool: Java Scientific Library 7

• Regression Engines: Linear, Quadratic and Gaussian
• Benchmark : NPB 8

4http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
5CES: Compiler Enhanced Scheduling: V S and Balachandran
6Nougrahiya and Nandivada, IMOP: http://www.cse.iitm.ac.in/~amannoug/imop/
7Flanagan M, http://www.ee.ucl.ac.uk/~mflanaga/java/index.html
8Bailey et. al. The NAS parallel benchmarks-summary and preliminary results

19/29



Predicted Configurations

Table: Optimal hardware configuration selected for NPB benchmarks
computed by Linear regression. All LITTLE cores run at 1.4 GHz. The
value in brackets shows the GHz frequency of big.

Benchmark Configuration chosen for a cost function
Execution Time Energy EDP

BT 4L4b(1.8) 4L0b 4L4b(1.4)
CG 0L4b(1.8) 4L0b 0L4b(1.4)
DC 4L4b(1.8) 4L0b 4L4b(1.4)
EP 4L4b(1.8) 0L4b(1.2) 4L4b(1.6)
FT 4L4b(1.8) 4L0b 4L4b(1.6)
IS 4L4b(1.8) 4L0b 4L4b(1.4)
LU 4L2b(2.0) 4L0b 0L4b(1.4)
MG 4L4b(1.8) 4L0b 4L4b(1.6)
SP 0L4b(1.8) 4L0b 0L4b(1.4) 20/29



CHOAMP: EXECUTION TIME

• On an average 28% improvement with Linear Regression Oracle

21/29



CHOAMP: EXECUTION TIME

• BT: Selecting the same configuration as base case
• DC: Unknown Parallel Operations.
• EP: Highly parallelizable, ↑ Threads ↑ Gain
• SP: High Sync costs, ↓ Threads ↑ Gain

22/29



CHOAMP: ENERGY

• On an average 65% improvement with Linear Regression Oracle
• Mostly Lower Configuration than base yield Higher energy gains

23/29



CHOAMP: ENERGY

• EP: Highly parallel

24/29



CHOAMP: EDP

• On an average 54% improvement with Linear Regression Oracle
• Mostly a mid configuration yield good results

25/29



CHOAMP: EDP

• LU: Gain higher than Energy, Execution Time negative
• SP: Rounded off

26/29



CES

• The trained Oracle without knowledge of CES
• On an average 14% improvement in execution time

27/29



CES + CHOAMP

• BT: Base configuration selected
• EP, IS, LU: Loss Amplified, Better Load balancing
• SP: Gain reduced, Lower Sync costs

28/29



Conclusions
• Asymmetry aware compilation can produce a more efficient
execution environment

• Predicts an optimal hardware configuration for a given input
program

• On an average 28% improvement in execution time
• Average 62% improvement in energy consumption
• Average 58% improvement in EDP
• Average 14% improvement in energy consumption with CES
• Works well in tandem with dynamic scheduling algorithms
(i) HMP (ii) CES.

• Future Work: Handle Improper parallelism, Recursive parallelism
• Future Work: Compiler/User directed Migration
• Future Work: Distributed AMP

29/29


