Parallel Program Scheduling in AMPs

J

Jyothi Krishna V S
Guides: Shankar Balachandran and Rupesh Nasre

jkrishna@cse.iitm.ac.in

IIT Madras

April 20, 2018

]
CPU: Power Wall

CPU

1/32

]
CPU: Power Wall

Processor @

CPU CPU

e Moore's Law hit the Power Wall

e Not practical to keep on increasing the frequency

1/32

]
CPU: Power Wall

Processor |I| Processor| | Processor

CPU CPU CPU

e Moore's Law hit the Power Wall

e Not practical to keep on increasing the frequency

e Move to Multicore environment, Multiple core working at lower
frequency

e Move to parallel programming to keep on reaping benefit

1/32

-
High Static Cost of CPU

Energy Consumption

DynamicT
Processor
Static

Processor

Energy Consumption

CPU
Friendly Tasks

i Processor

Processor

Memory

Friendly Tasks

e CPU Friendly Tasks: Mostly ALU operation (active CPU cycles)
e Memory Friendly Tasks: Mostly memory/ Branch operations

2/32

-
High Static Cost of CPU

Energy Consumption

DynamirT
Static

Processor

Processor

Energy Consumption

CPU
Friendly Tasks

Processor

Processor

Memory

Friendly Tasks

DVFS

Energy Consumption

Dynan

Static

M%H

Processor

Processor

Energy Consumption

CPU
Friendly Tasks

Processor

Processor

Memory

i Friendly Tasks

CPU Friendly Tasks: Mostly ALU operation (active CPU cycles)
Memory Friendly Tasks: Mostly memory/ Branch operations

DVFS: reduced the negative effect
Still had high static cost to keep modules on.

2/32

|
Asymmetric Multicore Processors (AMPs)

Energy Consumption Energy Consumption

Dynamiﬁ
Processor Processor Friegglq Tasks
Static Y

< Processors #

OO

Memory
Friendly Tasks

e CPU friendly tasks to big & powerful cores

e Memory friendly tasks to small & power efficient cores

eg. big.LITTLE from ARM, Tegra from NVIDIA]

3/32

|
AMP: Challenges with a multithreaded program

e What would be the optimal Hardware Configuration to run a Parallel

Program?
® Which type of core to run each thread on?
® Does an AMP environment help? (Use one type of core at a time)
® Number of resources of each type?
® Optimal frequency configuration for each core type?

CHOAMP, SIAM*

1* To submit
4/32

|
AMP: Challenges with a multithreaded program

e What would be the optimal Hardware Configuration to run a Parallel

Program?
® Which type of core to run each thread on?
® Does an AMP environment help? (Use one type of core at a time)

® Number of resources of each type?
® Optimal frequency configuration for each core type?

CHOAMP, SIAM*
® Given a AMP environment what would be the optimal scheduling for a

given parallel program?
CES, SIAM*

1* To submit
4/32

|
AMP: Challenges with a multithreaded program

e What would be the optimal Hardware Configuration to run a Parallel

Program?

® Which type of core to run each thread on?
® Does an AMP environment help? (Use one type of core at a time)

® Number of resources of each type?
® Optimal frequency configuration for each core type?

CHOAMP, SIAM*

® Given a AMP environment what would be the optimal scheduling for a
given parallel program?
CES, SIAM*

® How to maintain fairness among parallel threads?

e How to make efficiently manage the Memory System (Prefetching, Variable
Cache sizes etc)?

1* To submit
4/32

Compiler Enhanced Scheduling (CES): Recap

o Uniform Parallel Workload

® Online Performance Evaluation
Model(PEM)

<3z mm]
—

|

[big core » ltr stealing Shared worklist

[LITTLE core 40 Iterations in worklist

5/32

Compiler Enhanced Scheduling (CES): Recap

o Uniform Parallel Workload

® Online Performance Evaluation
Model(PEM)

<3z mm]
—

!

I big core » Itrstealing NN Shared worklist
[LITTLE core 40 Iterations in worklist

Sections

® Non uniform Parallel Workload
e Offline Affinity and
Normalization Scheduling

il i T
[Yes Wl = “"l;'m

B Victim Section Normalization Stage

5/32

CHOAMP: Cost Based Hardware Optimization
for Asymmetric Multicore Processors

6/32

-
Optimal Hardware

Given an input program, a user selected cost function and the
possible hardware configurations, can we find an optimal hardware
configuration which can run the program with minimal cost.

e Static/Compile time: Chen and John 2
e Dynamic: Execution time decisions : HMP Scheduling®

e Hybrid: Compile Time Instrumentation and Runtime Decision:
PIE*, CES

2J. Chen and L. K. John. Efficient program scheduling for heterogeneous multi-core
processors. in DAC '09

3http://www.arm.com

4K. Van Craeynest et al. Scheduling Heterogeneous Multi-cores Through Performance
Impact Estimation (PIE), ISCA '12

7/32

-
Static v/s Dynamic Scheduling

e Static
e Unknown variables
e Unknown Thread-to-Core Mapping
e Hardware Resource Reservation
e Scalable over large hardware configurations

8/32

-
Static v/s Dynamic Scheduling

e Static
e Unknown variables
Unknown Thread-to-Core Mapping
Hardware Resource Reservation
Scalable over large hardware configurations

e Dynamic
e Runtime overhead
e Scalability of the engine
e Accurate knowledge of workload

8/32

-
Static Scheduling

e Unknown Loop bounds: Estimate unknown variables based on known
variables.]]
® Unknown wasted cycles: Estimate the expected delay by learning for large

set of examples.

9/32

Static Scheduling

e Unknown Loop bounds: Estimate unknown variables based on known

variables.

® Unknown wasted cycles: Estimate the expected delay by learning for large

set of examples.

HC1
. ¢ HC2
.

Optimal Hardware Configuration

Cost Function
e
.
.
==}
K

ALU Operations

A Predictor trained with a set of program features (selected based on
architectural differences in AMP cores and the choice of parallel program) and

hardware configurations to

identify the optimal hardware configuration

9/32

-
CHOAMP: Training Phase

Hardware

Features Feature - configurations
vectors

— T e |

Cost
functions

?D?
[
buruins],

L—

i Knowledge

Microbenchmarks

10/32

CHOAMP: Compilation Phase

Knowledge
base
Feature
vectors
Oy
Op1 config Load
> ’ Predictor ’ Balance

Transformed

Use:InPE E / program

Input program

uoyduto;)

11/32

CHOAMP: The Big Picture

Hardware

Features Feature f\ configurations
vectors
I HN e
B — N »~— Hn <
I:‘ Cost § .
. N functions S
L] .
L 3
[]» —> <
— i
Microbenchmarks Knowledge
... base
Feature ,
vectors
Oy §
Op1 config Load S
’ ’ Predictor ’ Balance ’ S.
=}
~
.
Input program Transformed g

\ / program
User Input E

-
Test Environment : big.LITTLE

big. LITTLE System Design

Cortex A15/A5T

ok

Cortex A7 /A53

RN
] [

[L2Cache]

L2 Cache |

Core Types | Cortex-A7 Cortex-A15

Pipeline simple 8 stage in- | Out of Order,
order multi-issue

Frequency 600 - 1400 MHz 800 - 2000 MHz

Speed 1.9 DMIPS 4.01 DMIPS

Instruction Thumb-2

Set

I

P

‘ Cache Coherent Interconnect

i

!

Memory

Peripheral Interconnect

13/32

Test Environment :

big. LITTLE System Design

Cortex A15/AST Cortex AT /A53
|:| |:| D -
[_L2 Cache [r2cache |
‘ Cache Coherent Interconnect
Memory Peripheral Interconnect

big.LITTLE
Core Types | Cortex-A7 Cortex-A15
Pipeline simple 8 stage in- | Out of Order,
order multi-issue
Frequency 600 - 1400 MHz 800 - 2000 MHz
Speed 1.9 DMIPS 4.01 DMIPS
Instruction Thumb-2
Set
Al15 Smgle Core Four Cores
Freq Idle | Peak | Idle | Peak
2.0 GHz 0.95 2.40 1.15 5.28
1.8 GHz [0.70 1.65 0.70 | 3.50
1.4 GHz [038] 0.85 [0.40 | 2.30
1.2 GHz | 0.30 0.70 0.32 | 1.80
A7 Single Core Four Cores
Freq Idle Peak | Idle | Peak
1.4 GHz 0.20 0.50 0.22 1.40

13/32

Test Environment :

big. LITTLE System Design

Cortex A15/AST Cortex AT /A53
|:| |:| D -
[_L2 Cache [r2cache |
‘ Cache Coherent Interconnect ‘
Memory Peripheral Interconnect

big.LITTLE
Core Types | Cortex-A7 Cortex-A15
Pipeline simple 8 stage in- | Out of Order,
order multi-issue
Frequency 600 - 1400 MHz 800 - 2000 MHz
Speed 1.9 DMIPS 4.01 DMIPS
Instruction Thumb-2
Set
Al15 Smgle Core Four Cores
Freq Idle | Peak | Idle | Peak
2.0 GHz 0.95 2.40 1.15 5.28
1.8 GHz [0.70 1.65 0.70 | 3.50
1.4 GHz [038] 0.85 [0.40 | 2.30
1.2 GHz | 0.30 0.70 0.32 | 1.80
A7 Single Core Four Cores
Freq Idle Peak | Idle | Peak
1.4 GHz 0.20 0.50 0.22 1.40

Parallel Program : OpenMP

13/32

N
Feature Selection

e Low level : based on Hardware dissimilarities of big and LITTLE
e ALU operations
e Memory operations
e Branch operations
e False sharing

14/32

N
Feature Selection

e Low level : based on Hardware dissimilarities of big and LITTLE
e ALU operations
e Memory operations
e Branch operations
e False sharing

e High Level: synchronization constructs provided by OpenMP:
e Barriers
e Atomics

Critical sections

Flush operations

Reduction operations

14/32

Implementation

e Hardware Configurations: Odroid XU3 °

e Core Configurations: 4L4b, OL4b, 4L2b, 2L.2b, 4L0b

e big Frequencies : 2GHz, 1.8GHz, 1.6GHz, 1.4 GHz, 1.2GHz
Micro-benchmark generation: Python 2.7
e Dynamic Scheduling: HMP and CES® for dynamic load balancing
Analysis and Transformation: IMOP?’
Regression Tool: Java Scientific Library®

o Regression Engines: Linear, Quadratic and Gaussian

e Benchmark : NPB®

Shttp://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127

6]. K. Viswakaran Sreelatha, and S. Balachandran. 2016. Compiler Enhanced Scheduling for
OpenMP for Heterogeneous Multiprocessors. EEHCO '16

"Nougrahiya and Nandivada, IMOP: http://www.cse.iitm.ac.in/~amannoug/imop/

8Flanagan M, http://www.ee.ucl.ac.uk/~mflanaga/java/index.html

9Bailey et al. The NAS parallel benchmarks-summary and preliminary results

15/32

|
Walk Through Example

#define M 50000
int f(int *s, int A[], int cumSum[], int L) {
int MAX = 0, localSum = 0, temp = L/128;
int N = M - temp; /* Unknown Variablex/
#pragma omp parallel
{ int i, j;
#pragma omp for reduction(+:localSum)
for(i = 0; i<N ; i++) {
localSum += A[i]; cumSum[i] = O0;
for(j=0;j<N;j++) {
if (j<=1i) cumSum[i] += A[j];
}
#pragma omp critical
{ 1if (MAX < A[i]) MAX = A[i]; }
+}

return MAX;
1

|
Walk Through Example

#define M 50000
int f(int *s, int A[], int cumSum[], int L) {
int MAX = 0, localSum = 0, temp = L/128;
int N = M - temp; /* Unknown Variablex/
#pragma omp parallel

{ int i, j; M
#pragma omp for reduction(+:localSw

for(i = 0; i<N ; i++) {
localSum += A[i]; cumSum[i]

for(j=0;j<N;j++) {
if (j<=i) cumSum[i] += A[j: /

} Dependence Graph
#pragma omp critical
{ if (MAX < A[i]) MAX = A[il; }

i3
return MAX;

1 16/32

|
Walk Through Example

#define M 50000
int f(int *s, int A[], int cumSum[], int L) {
int MAX = 0, localSum = 0, temp = L/128;
int N = M - temp; /* Unknown Variablex/
#pragma omp parallel

{ int i, j; M
#pragma omp for reduction(+:localSw

for(i = 0; i<N ; i++) {
localSum += A[i]; cumSum[i]

for(j=0;j<N;j++) {
if (j<=i) cumSum[i] += A[j: /

} Dependence Graph
#pragma omp critical
{ if (MAX < A[i]) MAX = A[il; }

i3
return MAX;

1 16/32

|
Walk Through Example

Op Result range

i+j range(MAX(R(i)) -+ MAX(R(j

i *j range(MAX(R(i)) x MAX(R J
i~ range(MAX(R(i)) - MIN(R(})))
i/] range(MAX(R(i)) / MIN(R(})))
i >>] i - MAX(R()))

. %j R(i

MAX(R(7). R())

MAX(R()): Known maximum value in range i

R(k): Range to which the value k belongs

L into largest non empty bucket.

Le R4_5

temp = 50000/128 = R,_3
N = 50000 - R,_3 = R4_5 = 50000

Dependence Graph

16/32

Prediction v/s real world

=il Scaled
Energy Comsumption v/s predictions Energy
------ 4 Linear
3 quadratic
25 —A— gaussian
2

R P N
S N ¥ ©o o o & ¥ © @ o N ¥ © o o
c d ddd 2 ddddaadddd =2
3 2 &2 2 28 § 2 9 39 29 9 9 29 2 2 Y
¥ ¥ ¥ ¥ g 8N NWNF T T T S S
4 J J 4 J4 J J Jd 4J J J g
© ©o © o T ¥ T < T ¥ T =

Hardware Configurations

Scaled Prediction of Energy consumption by Predictor using different learning
kernels for our example compared to actual (Bold Blue). Shows how good the

Predictor is.

17/32

-
CHOAMP: EXECUTION TIME

. . " Hlinear
Percentage Improvement in Execution Time .
Oquadratic
© .
125.00 ~ HEgaussian
D
[©]
100.00 =
= o
g 75.00 =
1o} 0
[*] o« o n
50.00 —or S o «
g 5, 8 8 = 35 @8 s
156 N~ N
§ = =03 WS iss B 25 W m IS
e 0.00 Yo Mol Scs Hs® HcslE)
& E e ¥ ¢ g &
-25.00 = g

-50.00

Benchmarks

® On an average 28% improvement with Linear Regression Oracle

18/32

-
CHOAMP: EXECUTION TIME

Percentage Improvement in Execution Time Wlinear i
quadratic
125.00 E N gaussian
100.00 =
= N
g 75.00 P~
1o} n
[} «© o n
% 50.00 g g)) 8 ;' ;’ (C\'> o\—o‘
- ~_~ N ~ . 3 o N
§ 25.00 Igl Sg% I8gg 939 5 ENY
£ 0.00 Sl mce HBs® HSH IN_"”
g E o2 3 ¢ & g
-25.00 = = o
=
-50.00 o
Benchmarks
® BT: Selecting the same configuration as base case
® DC: Unknown Parallel Operations.
e EP: Highly parallelizable, 1 Configuration 1 Gain
e SP: High Sync costs, | Threads 1 Gain

19/32

|
CHOAMP: ENERGY

M linear

O quadratic
3 .
o Wl gaussian

Percentage Gain in Energy Consumption

99.94

]
> www D 0 oo AN g o
10
P mom g S ®mww N ymm 2R ® N2
GGG @ G 0L © IIY Bo® 8D Los
£ Q0 Q200 © VOO D NN~ Soo : < © o
g © O 1w BIOW SHo =
o P o -
=3 <
IR
<
§ o
5 a0
d)
gt s
» =
o - 71} =) (V] o <
» w [- | s N g
Benchmarks =

® On an average 65% improvement with Linear Regression Predictor
e Mostly Lower Configuration than base yields higher energy gains

20/32

CHOAMP: ENERGY

M linear
quadratic
M gaussian

<

Percentage Gain in Energy Consumption

s
3
>

[seXsrXer)
NN
NSNS
LO O O
-
'8
Benchmarks

o

ureb abejuasiag

ueaN

2 S O S O &

e EP: Highly parallel

21/32

|
CHOAMP: EDP

. Wlinear
Percentage Improvement in EDP O quadratic
120 Egaussian
[{e] Q 9 9
100 — @ S S 2
o o
8 3 o &
c 80 ~ N M AU
a N~ N~ < N~~~ g
o 60 3 g p:
o o o o o
o IS o rofTet % %
k] 40 < 2 < < S
< ~ o 8 < (32 R) 8
8] g ~ N
5 20 o
e 3
0 : o o o
= IT) 3) - 0 o 4] <
m o a o = 2 s 3
-20 s
Benchmarks

e On an average 54% improvement with Linear Regression Oracle

Mostly a mid configuration yields good results

22/32

|
CHOAMP: EDP

Percentage gain

Percentage Improvement in EDP
120
© o o g
100 ol N S S S
~ @ 5 8] J
® O o o <<
80 L ~ O~ . ~ I~
<t i'
60 0 o o
< g (%) - Lo L0 3
< < © < <
~
40 ~ o 9 ! [So R
~ NN o 3
20 o
5 .8
0 - o o o
= [(2] o] o
[8 8 [= | g 7]
-20
Benchmarks

LU: Gain higher than Energy, Execution Time negative
SP: Rounded off

Hlinear
Oquadratic
Wgaussian

58
54.42

30.88

Mean

23/32

|
CES + CHOAMP

M linear

Percentage gain in Execution time R
9e 9 X Oquadratic

o™ .
60.00 ¥ ™o Wgaussian
o S
< 4000 S 5 © ©
‘g § 9 4 ¢ © 3
o J ¥ o © « :
o 20.00 o S b oo Tof BN F_D Sow
g 8 o= w8 w8m w8w KN8s N8N N
8 < Q 9% G594 Q ; -
= o o Jdod Pco® HoN Hol i
@ 0.00 ||
o = Q = 2] 2 &) o
] m ') '8] s 0 g
& 2000 s
-40.00
Benchmarks

e The trained Oracle without knowledge of CES

e On an average 14% improvement in execution time

24/32

|
CES + CHOAMP

60.00

o 40.00

3

(=2}

o 2000

8

$ 0.0

1<

[

& .20.00
-40.00

I 24.10

B7_0.00

12.49

CG | 4.97
1

21.97
2.04

Percentage gain in Execution time

18.66

Bl-73.31

E

|-

0.00

J1.59

= -+
283 mow
S 2o
| ol (2]
iy 2
Benchmarks

e BT: Base configuration selected
e EP, IS, LU: Loss Amplified, Better Load balancing
e SP: Gain reduced, Lower Sync costs

W7.39
LU G.0U

I -70.22

W34
MG 0.00
W7.34

M linear
,3_ O quadratic
2 W gaussian

68
33

2

[“39
> aara
\. /

14.65

Mean |-3.25
1.1

8

25/32

N
CHOAMP:Conclusions

e On an average 28% improvement in execution time

Average 65% improvement in energy consumption

Average 58% improvement in EDP

Average 14% improvement in execution time with CES

Works well in tandem with dynamic scheduling algorithms
(i) HMP (ii) CES.

Sliding window regression: No significant gains.

26/32

SIAM: Scheduling Irregular Workloads on
Asymmetric Multicore processors

27/32

|
Irregular Parallel Workloads: Graph Algorithms

Parallelism depends on the input graphs.

Include Graph into training the oracle.

How to represent the graph with set of properties?

Should capture:
e Overall Workload
e Workload distribution
e Memory accesses/Atomics

Training for Algorithm-Graph pair

28/32

N
SIAM: Workflow

Algorithm Features Feature

vectors
= — —
Microbenchmarks E \‘ '/' Hardware

. . =

configurations =)

.

3

§ .

raining Graphs <

Preprocessing ¢
aed,s Knowledge I Graph’
_p||Feature | —» e nput Graph
: ase
Extraction

- aed’| - c oo Lo -- >

Input Graph

\ Feature Oy CQ)
vectors config

°© Load ,§

i Balance S.

=

/v =

~

~.

Transformed Q

Input program program 3

20/32

|
Average EDP gain over Algorithms

Percentage EDP improvement

100 T T T T T
pre O3
; Pred
80 a 2 Pred+pre C—1
] 2 S d w o
2 60 i b < g b
: 2 4 :
S = 3 = 2
£ a0t % 2 = R .
s S 3z 2 o ~ & s
g i 2 o J 5
£ = 2 & < =2
20 4 = B
&% P =
: cl Gl
£ or o 4
5
= 20 | e
-40 | _
1 1 1 1 1 1
c -4 Q s o
§] o n + >
o v a <
Graphs

Higher the better.

30/32

N
SIAM: Conclusion

e Graph properties are required to fully capture the workload.

e Compaction: Good representation of the input graph can reduce
both energy consumption and execution time.

e Predictor shows on an average 52% improvement in EDP
consumption.

e Add edge weight Properties : for weight based algorithms.
SSSP, MST, Max flow etc

31/32

