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CPU CPU CPU

e Moore's Law hit the Power Wall

e Not practical to keep on increasing the frequency

e Move to Multicore environment, Multiple core working at lower
frequency

e Move to parallel programming to keep on reaping benefit
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CPU Friendly Tasks: Mostly ALU operation (active CPU cycles)
Memory Friendly Tasks: Mostly memory/ Branch operations

DVFS: reduced the negative effect
Still had high static cost to keep modules on.
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Asymmetric Multicore Processors (AMPs)
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e CPU friendly tasks to big & powerful cores

e Memory friendly tasks to small & power efficient cores

eg. big.LITTLE from ARM, Tegra from NVIDIA ]
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AMP: Challenges with a multithreaded program

e What would be the optimal Hardware Configuration to run a Parallel

Program?
® Which type of core to run each thread on?
® Does an AMP environment help? (Use one type of core at a time)
® Number of resources of each type?
® Optimal frequency configuration for each core type?

CHOAMP, SIAM*

1* To submit
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AMP: Challenges with a multithreaded program

e What would be the optimal Hardware Configuration to run a Parallel

Program?

® Which type of core to run each thread on?
® Does an AMP environment help? (Use one type of core at a time)

® Number of resources of each type?
® Optimal frequency configuration for each core type?

CHOAMP, SIAM*

® Given a AMP environment what would be the optimal scheduling for a
given parallel program?
CES, SIAM*

® How to maintain fairness among parallel threads?

e How to make efficiently manage the Memory System (Prefetching, Variable
Cache sizes etc)?

1* To submit
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Compiler Enhanced Scheduling (CES): Recap

o Uniform Parallel Workload

® Online Performance Evaluation
Model(PEM)

<3z mm ]
—
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[ big core » ltr stealing Shared worklist

[ LITTLE core 40 Iterations in worklist
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Compiler Enhanced Scheduling (CES): Recap

o Uniform Parallel Workload

® Online Performance Evaluation
Model(PEM)

<3z mm ]
—

!

I big core » Itrstealing NN Shared worklist
[ LITTLE core 40 Iterations in worklist

Sections

® Non uniform Parallel Workload
e Offline Affinity and
Normalization Scheduling

il i T
[ Yes Wl = “"l;'m

B Victim Section Normalization Stage
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CHOAMP: Cost Based Hardware Optimization
for Asymmetric Multicore Processors
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Optimal Hardware

Given an input program, a user selected cost function and the
possible hardware configurations, can we find an optimal hardware
configuration which can run the program with minimal cost.

e Static/Compile time: Chen and John 2
e Dynamic: Execution time decisions : HMP Scheduling®

e Hybrid: Compile Time Instrumentation and Runtime Decision:
PIE*, CES

2J. Chen and L. K. John. Efficient program scheduling for heterogeneous multi-core
processors. in DAC '09

3http://www.arm.com

4K. Van Craeynest et al. Scheduling Heterogeneous Multi-cores Through Performance
Impact Estimation (PIE), ISCA '12
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Static v/s Dynamic Scheduling

e Static
e Unknown variables
e Unknown Thread-to-Core Mapping
e Hardware Resource Reservation
e Scalable over large hardware configurations
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Static v/s Dynamic Scheduling

e Static
e Unknown variables
Unknown Thread-to-Core Mapping
Hardware Resource Reservation
Scalable over large hardware configurations

e Dynamic
e Runtime overhead
e Scalability of the engine
e Accurate knowledge of workload
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Static Scheduling

e Unknown Loop bounds: Estimate unknown variables based on known
variables. ] ]
® Unknown wasted cycles: Estimate the expected delay by learning for large

set of examples.
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Static Scheduling

e Unknown Loop bounds: Estimate unknown variables based on known

variables.

® Unknown wasted cycles: Estimate the expected delay by learning for large

set of examples.

HC1
. ¢ HC2
.

Optimal Hardware Configuration

Cost Function
e
.
.
==}
K

ALU Operations

A Predictor trained with a set of program features (selected based on
architectural differences in AMP cores and the choice of parallel program) and

hardware configurations to

identify the optimal hardware configuration
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CHOAMP: Training Phase
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CHOAMP: Compilation Phase
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CHOAMP: The Big Picture
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Test Environment : big.LITTLE

big. LITTLE System Design
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Test Environment :

big. LITTLE System Design

Cortex A15/AST Cortex AT /A53
|:| |:| D -
[_L2 Cache [ r2cache |
‘ Cache Coherent Interconnect
Memory Peripheral Interconnect

big.LITTLE
Core Types | Cortex-A7 Cortex-A15
Pipeline simple 8 stage in- | Out of Order,
order multi-issue
Frequency 600 - 1400 MHz 800 - 2000 MHz
Speed 1.9 DMIPS 4.01 DMIPS
Instruction Thumb-2
Set
Al15 Smgle Core Four Cores
Freq Idle | Peak | Idle | Peak
2.0 GHz 0.95 2.40 1.15 5.28
1.8 GHz [ 0.70 1.65 0.70 | 3.50
1.4 GHz [ 038 ] 0.85 [ 0.40 | 2.30
1.2 GHz | 0.30 0.70 0.32 | 1.80
A7 Single Core Four Cores
Freq Idle Peak | Idle | Peak
1.4 GHz 0.20 0.50 0.22 1.40
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Parallel Program : OpenMP
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N
Feature Selection

e Low level : based on Hardware dissimilarities of big and LITTLE
e ALU operations
e Memory operations
e Branch operations
e False sharing
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Feature Selection

e Low level : based on Hardware dissimilarities of big and LITTLE
e ALU operations
e Memory operations
e Branch operations
e False sharing

e High Level: synchronization constructs provided by OpenMP:
e Barriers
e Atomics

Critical sections

Flush operations

Reduction operations
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Implementation

e Hardware Configurations: Odroid XU3 °

e Core Configurations: 4L4b, OL4b, 4L2b, 2L.2b, 4L0b

e big Frequencies : 2GHz, 1.8GHz, 1.6GHz, 1.4 GHz, 1.2GHz
Micro-benchmark generation: Python 2.7
e Dynamic Scheduling: HMP and CES® for dynamic load balancing
Analysis and Transformation: IMOP?’
Regression Tool: Java Scientific Library®

o Regression Engines: Linear, Quadratic and Gaussian

e Benchmark : NPB®

Shttp://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127

6]. K. Viswakaran Sreelatha, and S. Balachandran. 2016. Compiler Enhanced Scheduling for
OpenMP for Heterogeneous Multiprocessors. EEHCO '16

"Nougrahiya and Nandivada, IMOP: http://www.cse.iitm.ac.in/~amannoug/imop/

8Flanagan M, http://www.ee.ucl.ac.uk/~mflanaga/java/index.html

9Bailey et al. The NAS parallel benchmarks-summary and preliminary results
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Walk Through Example

#define M 50000
int f(int *s, int A[], int cumSum[], int L) {
int MAX = 0, localSum = 0, temp = L/128;
int N = M - temp; /* Unknown Variablex/
#pragma omp parallel
{ int i, j;
#pragma omp for reduction(+:localSum)
for(i = 0; i<N ; i++) {
localSum += A[i]; cumSum[i] = O0;
for(j=0;j<N;j++) {
if (j<=1i) cumSum[i] += A[j];
}
#pragma omp critical
{ 1if (MAX < A[i]) MAX = A[i]; }
+}

return MAX;
1
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Walk Through Example

Op Result range

i+j range(MAX(R(i)) -+ MAX(R(j

i *j range(MAX(R(i)) x MAX(R J
i~ range(MAX(R(i)) - MIN(R(})))
i/] range(MAX(R(i)) / MIN(R(})))
i >> ] i - MAX(R()))

. %j R(i

MAX(R(7). R())

MAX(R( )): Known maximum value in range i

R(k): Range to which the value k belongs

L into largest non empty bucket.

Le R4_5

temp = 50000/128 = R,_3
N = 50000 - R,_3 = R4_5 = 50000

Dependence Graph
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Prediction v/s real world

=il Scaled
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Hardware Configurations

Scaled Prediction of Energy consumption by Predictor using different learning
kernels for our example compared to actual (Bold Blue). Shows how good the

Predictor is.
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CHOAMP: EXECUTION TIME
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® On an average 28% improvement with Linear Regression Oracle
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CHOAMP: EXECUTION TIME
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Benchmarks
® BT: Selecting the same configuration as base case
® DC: Unknown Parallel Operations.
e EP: Highly parallelizable, 1 Configuration 1 Gain
e SP: High Sync costs, | Threads 1 Gain
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CHOAMP: ENERGY
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® On an average 65% improvement with Linear Regression Predictor
e Mostly Lower Configuration than base yields higher energy gains
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CHOAMP: ENERGY
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e EP: Highly parallel
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CHOAMP: EDP

. Wlinear
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e On an average 54% improvement with Linear Regression Oracle

Mostly a mid configuration yields good results
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CHOAMP: EDP

Percentage gain
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LU: Gain higher than Energy, Execution Time negative
SP: Rounded off
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CES + CHOAMP

M linear
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Benchmarks

e The trained Oracle without knowledge of CES

e On an average 14% improvement in execution time
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CES + CHOAMP
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e BT: Base configuration selected
e EP, IS, LU: Loss Amplified, Better Load balancing
e SP: Gain reduced, Lower Sync costs
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CHOAMP:Conclusions

e On an average 28% improvement in execution time

Average 65% improvement in energy consumption

Average 58% improvement in EDP

Average 14% improvement in execution time with CES

Works well in tandem with dynamic scheduling algorithms
(i) HMP (ii) CES.

Sliding window regression: No significant gains.
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SIAM: Scheduling Irregular Workloads on
Asymmetric Multicore processors
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Irregular Parallel Workloads: Graph Algorithms

Parallelism depends on the input graphs.

Include Graph into training the oracle.

How to represent the graph with set of properties?

Should capture:
e Overall Workload
e Workload distribution
e Memory accesses/Atomics

Training for Algorithm-Graph pair
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SIAM: Workflow
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Average EDP gain over Algorithms

Percentage EDP improvement
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Higher the better.
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SIAM: Conclusion

e Graph properties are required to fully capture the workload.

e Compaction: Good representation of the input graph can reduce
both energy consumption and execution time.

e Predictor shows on an average 52% improvement in EDP
consumption.

e Add edge weight Properties : for weight based algorithms.
SSSP, MST, Max flow etc
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