
Parallel Program Scheduling in AMPs

Jyothi Krishna V S
Guides: Shankar Balachandran and Rupesh Nasre

jkrishna@cse.iitm.ac.in

IIT Madras

April 20, 2018

CPU: Power Wall

CPU

Processor

ProcessorProcessor

Processor Processor

CPU

• Moore’s Law hit the Power Wall
• Not practical to keep on increasing the frequency
• Move to Multicore environment, Multiple core working at lower
frequency

• Move to parallel programming to keep on reaping benefit

1/32

CPU: Power Wall

CPU

Processor

ProcessorProcessor

Processor Processor

CPU

• Moore’s Law hit the Power Wall
• Not practical to keep on increasing the frequency

• Move to Multicore environment, Multiple core working at lower
frequency

• Move to parallel programming to keep on reaping benefit

1/32

CPU: Power Wall

CPU

Processor

ProcessorProcessor

Processor Processor

CPU

• Moore’s Law hit the Power Wall
• Not practical to keep on increasing the frequency
• Move to Multicore environment, Multiple core working at lower
frequency

• Move to parallel programming to keep on reaping benefit

1/32

High Static Cost of CPU

ProcessorProcessor

Processor Processor
Friendly Tasks

CPU

Friendly Tasks
Memory

Static

Dynamic

Energy Consumption Energy Consumption

DVFS

ProcessorProcessor

Processor Processor
Friendly Tasks

CPU

Static

Dynamic

Energy Consumption Energy Consumption

Friendly Tasks
Memory

• CPU Friendly Tasks: Mostly ALU operation (active CPU cycles)
• Memory Friendly Tasks: Mostly memory/ Branch operations

• DVFS: reduced the negative effect
• Still had high static cost to keep modules on.

2/32

High Static Cost of CPU

ProcessorProcessor

Processor Processor
Friendly Tasks

CPU

Friendly Tasks
Memory

Static

Dynamic

Energy Consumption Energy Consumption

DVFS

ProcessorProcessor

Processor Processor
Friendly Tasks

CPU

Static

Dynamic

Energy Consumption Energy Consumption

Friendly Tasks
Memory

• CPU Friendly Tasks: Mostly ALU operation (active CPU cycles)
• Memory Friendly Tasks: Mostly memory/ Branch operations
• DVFS: reduced the negative effect
• Still had high static cost to keep modules on.

2/32

Asymmetric Multicore Processors (AMPs)

Static

Dynamic

Processors

Friendly Tasks
CPUProcessorProcessor

Friendly Tasks
Memory

Energy Consumption Energy Consumption

• CPU friendly tasks to big & powerful cores
• Memory friendly tasks to small & power efficient cores

eg. big.LITTLE from ARM, Tegra from NVIDIA

3/32

AMP: Challenges with a multithreaded program

• What would be the optimal Hardware Configuration to run a Parallel
Program?

• Which type of core to run each thread on?
• Does an AMP environment help? (Use one type of core at a time)
• Number of resources of each type?• Optimal frequency configuration for each core type?

CHOAMP, SIAM*

• Given a AMP environment what would be the optimal scheduling for a
given parallel program?
CES, SIAM*

• How to maintain fairness among parallel threads?
• How to make efficiently manage the Memory System (Prefetching, Variable

Cache sizes etc)?
1

1* To submit
4/32

AMP: Challenges with a multithreaded program

• What would be the optimal Hardware Configuration to run a Parallel
Program?

• Which type of core to run each thread on?
• Does an AMP environment help? (Use one type of core at a time)
• Number of resources of each type?• Optimal frequency configuration for each core type?

CHOAMP, SIAM*
• Given a AMP environment what would be the optimal scheduling for a

given parallel program?
CES, SIAM*

• How to maintain fairness among parallel threads?
• How to make efficiently manage the Memory System (Prefetching, Variable

Cache sizes etc)?
1

1* To submit
4/32

AMP: Challenges with a multithreaded program

• What would be the optimal Hardware Configuration to run a Parallel
Program?

• Which type of core to run each thread on?
• Does an AMP environment help? (Use one type of core at a time)
• Number of resources of each type?• Optimal frequency configuration for each core type?

CHOAMP, SIAM*
• Given a AMP environment what would be the optimal scheduling for a

given parallel program?
CES, SIAM*

• How to maintain fairness among parallel threads?
• How to make efficiently manage the Memory System (Prefetching, Variable

Cache sizes etc)?
1

1* To submit
4/32

Compiler Enhanced Scheduling (CES): Recap

• Uniform Parallel Workload
• Online Performance Evaluation

Model(PEM)

40

40

20

20

44

44

16

16

R
E
E
N
T
R
Y

A B C

Parallel
for

Shared worklistItr stealing

P
E
M

big core

LITTLE core 40 Iterations in worklist

• Non uniform Parallel Workload
• Offline Affinity and

Normalization Scheduling

PEM

I
II
III
IV

IV

I

wl′im
wlim > wl′im

No
OpenMP

for

Yes wlim = wl′im

Sections

Affinity Allocation

Normalization Stage

Affinity

Victim Section

wlim

5/32

Compiler Enhanced Scheduling (CES): Recap

• Uniform Parallel Workload
• Online Performance Evaluation

Model(PEM)

40

40

20

20

44

44

16

16

R
E
E
N
T
R
Y

A B C

Parallel
for

Shared worklistItr stealing

P
E
M

big core

LITTLE core 40 Iterations in worklist

• Non uniform Parallel Workload
• Offline Affinity and

Normalization Scheduling

PEM

I
II
III
IV

IV

I

wl′im
wlim > wl′im

No
OpenMP

for

Yes wlim = wl′im

Sections

Affinity Allocation

Normalization Stage

Affinity

Victim Section

wlim

5/32

CHOAMP: Cost Based Hardware Optimization
for Asymmetric Multicore Processors

6/32

Optimal Hardware

Given an input program, a user selected cost function and the
possible hardware configurations, can we find an optimal hardware
configuration which can run the program with minimal cost.

• Static/Compile time: Chen and John 2

• Dynamic: Execution time decisions : HMP Scheduling3

• Hybrid: Compile Time Instrumentation and Runtime Decision:
PIE4, CES

2J. Chen and L. K. John. Efficient program scheduling for heterogeneous multi-core
processors. in DAC ’09

3http://www.arm.com
4K. Van Craeynest et al. Scheduling Heterogeneous Multi-cores Through Performance

Impact Estimation (PIE), ISCA ’12
7/32

Static v/s Dynamic Scheduling

• Static
• Unknown variables
• Unknown Thread-to-Core Mapping
• Hardware Resource Reservation
• Scalable over large hardware configurations

• Dynamic
• Runtime overhead
• Scalability of the engine
• Accurate knowledge of workload

8/32

Static v/s Dynamic Scheduling

• Static
• Unknown variables
• Unknown Thread-to-Core Mapping
• Hardware Resource Reservation
• Scalable over large hardware configurations

• Dynamic
• Runtime overhead
• Scalability of the engine
• Accurate knowledge of workload

8/32

Static Scheduling
• Unknown Loop bounds: Estimate unknown variables based on known

variables.• Unknown wasted cycles: Estimate the expected delay by learning for large
set of examples.

C
o
st

F
u
n
ct

io
n

ALU Operations

M
em

or
y

O
per

at
io

ns

C
ontrol operations

HC1

Optimal Hardware Configuration

HC2

HC3

HC4

A Predictor trained with a set of program features (selected based on
architectural differences in AMP cores and the choice of parallel program) and
hardware configurations to identify the optimal hardware configuration

9/32

Static Scheduling
• Unknown Loop bounds: Estimate unknown variables based on known

variables.• Unknown wasted cycles: Estimate the expected delay by learning for large
set of examples.

C
os

t
F

u
n
ct

io
n

ALU Operations

M
em

or
y

O
per

at
io

ns

C
ontrol operations

HC1

Optimal Hardware Configuration

HC2

HC3

HC4

A Predictor trained with a set of program features (selected based on
architectural differences in AMP cores and the choice of parallel program) and
hardware configurations to identify the optimal hardware configuration

9/32

CHOAMP: Training Phase

Training

Hardware
configurationsFeature

vectors
Features

Knowledge
base

Cost
functions

T
rain

in
g

Microbenchmarks

10/32

CHOAMP: Compilation Phase

Knowledge
base

Obl

Predictor
Load

Balance

Feature
vectors

User Input

Transformed
program

Input program

Obl
config

C
om

pilation

11/32

CHOAMP: The Big Picture

Training

Hardware
configurationsFeature

vectors
Features

Knowledge
base

Cost
functions

Obl

Predictor
Load

Balance

Feature
vectors

User Input

Transformed
program

Input program

Obl
config

T
rain

in
g

C
om

pilation

Microbenchmarks

Test Environment : big.LITTLE

Cortex A15/A57 Cortex A7 /A53

Cache Coherent Interconnect

L2 Cache L2 Cache

GPU

Memory

big.LITTLE System Design

Peripheral Interconnect

Core Types Cortex-A7 Cortex-A15
Pipeline simple 8 stage in-

order
Out of Order,
multi-issue

Frequency 600 - 1400 MHz 800 - 2000 MHz
Speed 1.9 DMIPS 4.01 DMIPS
Instruction
Set

Thumb-2

A15 Single Core Four Cores
Freq Idle Peak Idle Peak

2.0 GHz 0.95 2.40 1.15 5.28
1.8 GHz 0.70 1.65 0.70 3.50
1.4 GHz 0.38 0.85 0.40 2.30
1.2 GHz 0.30 0.70 0.32 1.80

A7 Single Core Four Cores
Freq Idle Peak Idle Peak

1.4 GHz 0.20 0.50 0.22 1.40

Parallel Program : OpenMP

13/32

Test Environment : big.LITTLE

Cortex A15/A57 Cortex A7 /A53

Cache Coherent Interconnect

L2 Cache L2 Cache

GPU

Memory

big.LITTLE System Design

Peripheral Interconnect

Core Types Cortex-A7 Cortex-A15
Pipeline simple 8 stage in-

order
Out of Order,
multi-issue

Frequency 600 - 1400 MHz 800 - 2000 MHz
Speed 1.9 DMIPS 4.01 DMIPS
Instruction
Set

Thumb-2

A15 Single Core Four Cores
Freq Idle Peak Idle Peak

2.0 GHz 0.95 2.40 1.15 5.28
1.8 GHz 0.70 1.65 0.70 3.50
1.4 GHz 0.38 0.85 0.40 2.30
1.2 GHz 0.30 0.70 0.32 1.80

A7 Single Core Four Cores
Freq Idle Peak Idle Peak

1.4 GHz 0.20 0.50 0.22 1.40

Parallel Program : OpenMP

13/32

Test Environment : big.LITTLE

Cortex A15/A57 Cortex A7 /A53

Cache Coherent Interconnect

L2 Cache L2 Cache

GPU

Memory

big.LITTLE System Design

Peripheral Interconnect

Core Types Cortex-A7 Cortex-A15
Pipeline simple 8 stage in-

order
Out of Order,
multi-issue

Frequency 600 - 1400 MHz 800 - 2000 MHz
Speed 1.9 DMIPS 4.01 DMIPS
Instruction
Set

Thumb-2

A15 Single Core Four Cores
Freq Idle Peak Idle Peak

2.0 GHz 0.95 2.40 1.15 5.28
1.8 GHz 0.70 1.65 0.70 3.50
1.4 GHz 0.38 0.85 0.40 2.30
1.2 GHz 0.30 0.70 0.32 1.80

A7 Single Core Four Cores
Freq Idle Peak Idle Peak

1.4 GHz 0.20 0.50 0.22 1.40

Parallel Program : OpenMP 13/32

Feature Selection

• Low level : based on Hardware dissimilarities of big and LITTLE
• ALU operations
• Memory operations
• Branch operations
• False sharing

• High Level: synchronization constructs provided by OpenMP:
• Barriers
• Atomics
• Critical sections
• Flush operations
• Reduction operations

14/32

Feature Selection

• Low level : based on Hardware dissimilarities of big and LITTLE
• ALU operations
• Memory operations
• Branch operations
• False sharing

• High Level: synchronization constructs provided by OpenMP:
• Barriers
• Atomics
• Critical sections
• Flush operations
• Reduction operations

14/32

Implementation
• Hardware Configurations: Odroid XU3 5

• Core Configurations: 4L4b, 0L4b, 4L2b, 2L2b, 4L0b
• big Frequencies : 2GHz, 1.8GHz, 1.6GHz, 1.4 GHz, 1.2GHz

• Micro-benchmark generation: Python 2.7
• Dynamic Scheduling: HMP and CES6 for dynamic load balancing
• Analysis and Transformation: IMOP7

• Regression Tool: Java Scientific Library8
• Regression Engines: Linear, Quadratic and Gaussian

• Benchmark : NPB9

5http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
6J. K. Viswakaran Sreelatha, and S. Balachandran. 2016. Compiler Enhanced Scheduling for

OpenMP for Heterogeneous Multiprocessors. EEHCO ’16
7Nougrahiya and Nandivada, IMOP: http://www.cse.iitm.ac.in/~amannoug/imop/
8Flanagan M, http://www.ee.ucl.ac.uk/~mflanaga/java/index.html
9Bailey et al. The NAS parallel benchmarks-summary and preliminary results

15/32

Walk Through Example
define M 50000
int f(int *s, int A[], int cumSum[], int L) {

int MAX = 0, localSum = 0, temp = L/128;
int N = M - temp; /* Unknown Variable */

#pragma omp parallel
{ int i, j;

#pragma omp for reduction(+:localSum)
for(i = 0; i<N ; i++) {

localSum += A[i]; cumSum[i] = 0;
for(j=0;j<N;j++) {

if(j<=i) cumSum[i] += A[j];
}
#pragma omp critical
{ if(MAX < A[i]) MAX = A[i]; }

}}
return MAX;

}

16/32

Walk Through Example
define M 50000
int f(int *s, int A[], int cumSum[], int L) {

int MAX = 0, localSum = 0, temp = L/128;
int N = M - temp; /* Unknown Variable */

#pragma omp parallel
{ int i, j;

#pragma omp for reduction(+:localSum)
for(i = 0; i<N ; i++) {

localSum += A[i]; cumSum[i] = 0;
for(j=0;j<N;j++) {

if(j<=i) cumSum[i] += A[j];
}
#pragma omp critical
{ if(MAX < A[i]) MAX = A[i]; }

}}
return MAX;

}

M L 128

temp

Dependence GraphN

16/32

Walk Through Example
define M 50000
int f(int *s, int A[], int cumSum[], int L) {

int MAX = 0, localSum = 0, temp = L/128;
int N = M - temp; /* Unknown Variable */

#pragma omp parallel
{ int i, j;

#pragma omp for reduction(+:localSum)
for(i = 0; i<N ; i++) {

localSum += A[i]; cumSum[i] = 0;
for(j=0;j<N;j++) {

if(j<=i) cumSum[i] += A[j];
}
#pragma omp critical
{ if(MAX < A[i]) MAX = A[i]; }

}}
return MAX;

}

M L 128

temp

Dependence GraphN

16/32

Walk Through Example

Op Result range
i + j range(MAX (R(i))+MAX (R(j)))
i * j range(MAX (R(i)) ∗MAX (R(j)))
i - j range(MAX(R(i)) - MIN(R(j)))
i / j range(MAX(R(i)) / MIN(R(j)))
i >> j i - MAX(R(j))
i % j R(j)
i = j MAX(R(i), R(j))
MAX(R(i)): Known maximum value in range i
R(k): Range to which the value k belongs

• L into largest non empty bucket.
• L ε R4−5
• temp = 50000/128 = R2−3
• N = 50000 - R2−3 = R4−5 = 50000

M L 128

temp

Dependence GraphN

16/32

Prediction v/s real world

Scaled Prediction of Energy consumption by Predictor using different learning
kernels for our example compared to actual (Bold Blue). Shows how good the
Predictor is.

17/32

CHOAMP: EXECUTION TIME

• On an average 28% improvement with Linear Regression Oracle

18/32

CHOAMP: EXECUTION TIME

• BT: Selecting the same configuration as base case
• DC: Unknown Parallel Operations.
• EP: Highly parallelizable, ↑ Configuration ↑ Gain
• SP: High Sync costs, ↓ Threads ↑ Gain

19/32

CHOAMP: ENERGY

• On an average 65% improvement with Linear Regression Predictor
• Mostly Lower Configuration than base yields higher energy gains

20/32

CHOAMP: ENERGY

• EP: Highly parallel

21/32

CHOAMP: EDP

• On an average 54% improvement with Linear Regression Oracle
• Mostly a mid configuration yields good results

22/32

CHOAMP: EDP

• LU: Gain higher than Energy, Execution Time negative
• SP: Rounded off

23/32

CES + CHOAMP

• The trained Oracle without knowledge of CES
• On an average 14% improvement in execution time

24/32

CES + CHOAMP

• BT: Base configuration selected
• EP, IS, LU: Loss Amplified, Better Load balancing
• SP: Gain reduced, Lower Sync costs

25/32

CHOAMP:Conclusions

• On an average 28% improvement in execution time
• Average 65% improvement in energy consumption
• Average 58% improvement in EDP
• Average 14% improvement in execution time with CES
• Works well in tandem with dynamic scheduling algorithms
(i) HMP (ii) CES.

• Sliding window regression: No significant gains.

26/32

SIAM: Scheduling Irregular Workloads on
Asymmetric Multicore processors

27/32

Irregular Parallel Workloads: Graph Algorithms

• Parallelism depends on the input graphs.
• Include Graph into training the oracle.
• How to represent the graph with set of properties?
• Should capture:

• Overall Workload
• Workload distribution
• Memory accesses/Atomics

• Training for Algorithm-Graph pair

28/32

SIAM: Workflow
Algorithm Features

Knowledge
base

Obl

Predictor

Feature
vectors

Transformed
programInput program

Obl
config

T
rain

in
g

C
om

pilation

Microbenchmarks

Training Graphs

Training

Hardware
configurations

Preprocessing

Load
Balance

Feature
vectors
Feature
vectors

Input Graph´Feature
Extraction

aed,s

Compaction
aed´

Input Graph

29/32

Average EDP gain over Algorithms

-40

-20

0

20

40

60

80

100

c
o
m

c
o
n

p
R

s
s
s
p tc

A
v
g

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t

Graphs

Percentage EDP improvement

pre
Pred

Pred+pre
41

.9

20
.8

4

62
.1

2

34
.1

7

11
.4

1

34
.0

9

21
.1

7

22
.9

39
.8

5

29
.0

8

17
.3

7 26
.0

7

55
.9

9

56
.2

3 70
.9

1

50
.8

5

29
.6

8

52
.7

3

Higher the better.

30/32

SIAM: Conclusion

• Graph properties are required to fully capture the workload.
• Compaction: Good representation of the input graph can reduce
both energy consumption and execution time.

• Predictor shows on an average 52% improvement in EDP
consumption.

• Add edge weight Properties : for weight based algorithms.
SSSP, MST, Max flow etc

31/32

