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• Moore’s Law hit the Power Wall
• Not practical to keep on increasing the frequency
• Move to Multicore environment, Multiple core working at lower
frequency

• Move to parallel programming to keep on reaping benefit
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High Static Cost of CPU
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• CPU Friendly Tasks: Mostly ALU operation (active CPU cycles)
• Memory Friendly Tasks: Mostly memory/ Branch operations

• DVFS: reduced the negative effect
• Still had high static cost to keep modules on.
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Asymmetric Multicore Processors (AMPs)
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• CPU friendly tasks to big & powerful cores
• Memory friendly tasks to small & power efficient cores

eg. big.LITTLE from ARM, Tegra from NVIDIA
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AMP: Challenges with a multithreaded program

• What would be the optimal Hardware Configuration to run a Parallel
Program?

• Which type of core to run each thread on?
• Does an AMP environment help? (Use one type of core at a time)
• Number of resources of each type?• Optimal frequency configuration for each core type?

CHOAMP, SIAM*

• Given a AMP environment what would be the optimal scheduling for a
given parallel program?
CES, SIAM*

• How to maintain fairness among parallel threads?
• How to make efficiently manage the Memory System (Prefetching, Variable

Cache sizes etc)?
1

1* To submit
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Compiler Enhanced Scheduling (CES): Recap

• Uniform Parallel Workload
• Online Performance Evaluation
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CHOAMP: Cost Based Hardware Optimization
for Asymmetric Multicore Processors
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Optimal Hardware

Given an input program, a user selected cost function and the
possible hardware configurations, can we find an optimal hardware
configuration which can run the program with minimal cost.

• Static/Compile time: Chen and John 2

• Dynamic: Execution time decisions : HMP Scheduling3

• Hybrid: Compile Time Instrumentation and Runtime Decision:
PIE4, CES

2J. Chen and L. K. John. Efficient program scheduling for heterogeneous multi-core
processors. in DAC ’09

3http://www.arm.com
4K. Van Craeynest et al. Scheduling Heterogeneous Multi-cores Through Performance

Impact Estimation (PIE), ISCA ’12
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Static v/s Dynamic Scheduling

• Static
• Unknown variables
• Unknown Thread-to-Core Mapping
• Hardware Resource Reservation
• Scalable over large hardware configurations

• Dynamic
• Runtime overhead
• Scalability of the engine
• Accurate knowledge of workload
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Static Scheduling
• Unknown Loop bounds: Estimate unknown variables based on known

variables.• Unknown wasted cycles: Estimate the expected delay by learning for large
set of examples.
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A Predictor trained with a set of program features (selected based on
architectural differences in AMP cores and the choice of parallel program) and
hardware configurations to identify the optimal hardware configuration
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CHOAMP: Training Phase
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CHOAMP: Compilation Phase
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CHOAMP: The Big Picture
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Test Environment : big.LITTLE

Cortex A15/A57 Cortex A7 /A53

Cache Coherent Interconnect

L2 Cache L2 Cache

GPU

Memory

big.LITTLE System Design

Peripheral Interconnect

Core Types Cortex-A7 Cortex-A15
Pipeline simple 8 stage in-

order
Out of Order,
multi-issue

Frequency 600 - 1400 MHz 800 - 2000 MHz
Speed 1.9 DMIPS 4.01 DMIPS
Instruction
Set

Thumb-2

A15 Single Core Four Cores
Freq Idle Peak Idle Peak

2.0 GHz 0.95 2.40 1.15 5.28
1.8 GHz 0.70 1.65 0.70 3.50
1.4 GHz 0.38 0.85 0.40 2.30
1.2 GHz 0.30 0.70 0.32 1.80

A7 Single Core Four Cores
Freq Idle Peak Idle Peak

1.4 GHz 0.20 0.50 0.22 1.40

Parallel Program : OpenMP
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Feature Selection

• Low level : based on Hardware dissimilarities of big and LITTLE
• ALU operations
• Memory operations
• Branch operations
• False sharing

• High Level: synchronization constructs provided by OpenMP:
• Barriers
• Atomics
• Critical sections
• Flush operations
• Reduction operations
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Implementation
• Hardware Configurations: Odroid XU3 5

• Core Configurations: 4L4b, 0L4b, 4L2b, 2L2b, 4L0b
• big Frequencies : 2GHz, 1.8GHz, 1.6GHz, 1.4 GHz, 1.2GHz

• Micro-benchmark generation: Python 2.7
• Dynamic Scheduling: HMP and CES6 for dynamic load balancing
• Analysis and Transformation: IMOP7

• Regression Tool: Java Scientific Library8
• Regression Engines: Linear, Quadratic and Gaussian

• Benchmark : NPB9

5http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
6J. K. Viswakaran Sreelatha, and S. Balachandran. 2016. Compiler Enhanced Scheduling for

OpenMP for Heterogeneous Multiprocessors. EEHCO ’16
7Nougrahiya and Nandivada, IMOP: http://www.cse.iitm.ac.in/~amannoug/imop/
8Flanagan M, http://www.ee.ucl.ac.uk/~mflanaga/java/index.html
9Bailey et al. The NAS parallel benchmarks-summary and preliminary results
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Walk Through Example
# define M 50000
int f(int *s, int A[], int cumSum[], int L) {

int MAX = 0, localSum = 0, temp = L/128;
int N = M - temp; /* Unknown Variable */

#pragma omp parallel
{ int i, j;

#pragma omp for reduction(+:localSum)
for(i = 0; i<N ; i++) {

localSum += A[i]; cumSum[i] = 0;
for(j=0;j<N;j++) {

if(j<=i) cumSum[i] += A[j];
}
#pragma omp critical
{ if(MAX < A[i]) MAX = A[i]; }

}}
return MAX;

}
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Walk Through Example

Op Result range
i + j range(MAX (R(i))+MAX (R(j)))
i * j range(MAX (R(i)) ∗MAX (R(j)))
i - j range(MAX(R(i)) - MIN(R(j)))
i / j range(MAX(R(i)) / MIN(R(j)))
i >> j i - MAX(R(j))
i % j R(j)
i = j MAX(R(i), R(j))
MAX(R(i)): Known maximum value in range i
R(k): Range to which the value k belongs

• L into largest non empty bucket.
• L ε R4−5
• temp = 50000/128 = R2−3
• N = 50000 - R2−3 = R4−5 = 50000

M L 128

temp

Dependence GraphN
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Prediction v/s real world

Scaled Prediction of Energy consumption by Predictor using different learning
kernels for our example compared to actual (Bold Blue). Shows how good the
Predictor is.
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CHOAMP: EXECUTION TIME

• On an average 28% improvement with Linear Regression Oracle
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CHOAMP: EXECUTION TIME

• BT: Selecting the same configuration as base case
• DC: Unknown Parallel Operations.
• EP: Highly parallelizable, ↑ Configuration ↑ Gain
• SP: High Sync costs, ↓ Threads ↑ Gain
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CHOAMP: ENERGY

• On an average 65% improvement with Linear Regression Predictor
• Mostly Lower Configuration than base yields higher energy gains
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CHOAMP: ENERGY

• EP: Highly parallel
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CHOAMP: EDP

• On an average 54% improvement with Linear Regression Oracle
• Mostly a mid configuration yields good results
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CHOAMP: EDP

• LU: Gain higher than Energy, Execution Time negative
• SP: Rounded off
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CES + CHOAMP

• The trained Oracle without knowledge of CES
• On an average 14% improvement in execution time
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CES + CHOAMP

• BT: Base configuration selected
• EP, IS, LU: Loss Amplified, Better Load balancing
• SP: Gain reduced, Lower Sync costs
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CHOAMP:Conclusions

• On an average 28% improvement in execution time
• Average 65% improvement in energy consumption
• Average 58% improvement in EDP
• Average 14% improvement in execution time with CES
• Works well in tandem with dynamic scheduling algorithms
(i) HMP (ii) CES.

• Sliding window regression: No significant gains.
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SIAM: Scheduling Irregular Workloads on
Asymmetric Multicore processors
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Irregular Parallel Workloads: Graph Algorithms

• Parallelism depends on the input graphs.
• Include Graph into training the oracle.
• How to represent the graph with set of properties?
• Should capture:

• Overall Workload
• Workload distribution
• Memory accesses/Atomics

• Training for Algorithm-Graph pair
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SIAM: Workflow
Algorithm Features
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Average EDP gain over Algorithms
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SIAM: Conclusion

• Graph properties are required to fully capture the workload.
• Compaction: Good representation of the input graph can reduce
both energy consumption and execution time.

• Predictor shows on an average 52% improvement in EDP
consumption.

• Add edge weight Properties : for weight based algorithms.
SSSP, MST, Max flow etc
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