
Final Exam

CS6848, IIT Madras

28-Apr-2012

1. [12] Flow analysis Extend the 0-CFA flow analysis to become flow sen-
sitive. As a result given the following code, the flow set for the variable
a at both lines L1 and L3 is a singleton set (instead of {A, B}) as is the
case with 0-CFA.

class A { ... };

class B extends A { ... };

L0: A a = new A();

L1: a.foo(x); // flow set {A}

L2: a = new B(y);

L3: a.foo(); // flow set {B}

The grammar for the statement and expressions is given below.

Statement ::= if (Exp) { Statement* } else { Statement* }

::= id = Exp

::= Exp.id(Exp)

Exp ::= true | false | id | this | new id()

Hints:

• id denotes an identifier.

• You can assume that each statement is uniquely labeled.

• To think: Recall the flow set map in 0-CFA. How will it be different
here?

2. [5] Closure conversion Translate the following scheme code to seman-
tically equivalent C code.

(define f (lambda (x, y)

(let (g (lambda (y) (+ x y))) g)))

set! a (f 2 3);

set! b (f 4 5);

set! x (a 5); set !y (b 6);

1

3. [8] Language extension We will extend the simply typed lambda cal-
culus with a parallel loop.

Language:

e ::= x|λx.e|e1e2|ref e|!e|let x = e1 in e2|e1; e2

extended with
e ::= · · · | ploop (x e1) e2

where e1 evaluates to a number (say n), then the loop creates n threads,
each thread executes e2 for varying value of x (1 .. n) and then waits for
each of the thread to terminate. Note: x is the loop index and may be
free in e2.

Provide the extensions to the types, values, type system, and operational
semantics (for just the ploop extension).

Assume an atomic consistency model; when two threads T1 and T2 are
running in parallel, the final state gives an impression that the order of
the execution is T1 followed by T2 or T2 followed by T1 without any inter-
leaving.

4. [5] Partial evaluation For the partial evaluation algorithm discussed in
the class, does it terminate? If yes, then prove the termination or else
provide a counter example and give ways to enforce termination.

5. [10] Type system for program analysis Here is a new expression
language that performs file operations.

e ::= e_1; e_2 | Str | open e | close e | read e

where,

• Str is a character string.

• open: opens the file given by the string argument.

• close e: closes the file given by the string argument.

• read e: reads an element from the file given by the string argument.

Write a type system that guarantees that a well typed program respects
the following protocol:

• a closed file is not read.

• an opened file is not reopened.

• a closed file is not closed again.

You can assume that all files are closed to start with. Examples:

• open ‘file1’; read ‘file1’; close ‘file1’ – should type check.

• open ‘file2’; close ‘file2’; read ‘file2’ – should not type
check.

2

