Last class

CS6848 - Principles of Programming Languages

Principles of Programming Languages Interpreters
A Environment
. . B Cells
V. Krishna Nandivada
C Closures
IIT Madras D Recursive environments
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 1/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 2/1

iniroguction

@ An interpreter executes a program as per the semantics.

@ An interpreter can be viewed as an executable description of the semantics of a
programming language.

@ Program semantics is the field concerned with the rigorous mathematical study
of the meaning of programming languages and models of computation.

@ Formal ways of describing the programming semantics.

e Operational semantics - execution of programs in the language is
described directly (in the context of an abstract machine).
@ Big-step semantics (with environments) -is close in spirit to the
interpreters we have seen earlier.
@ Small-step semantics (with syntactic substitution) - formalizes the
inlining of a procedure call as an approach to computation.
e Denotational Semantics - each phrase in the language is
translatedto a denotation - a phrase in some other language.
e Axiomatic semantics - gives meaning to phrases by describing the
logical axioms that apply to them.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 3/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 4/1

Lambda Calculus Extension of the Lambda-calculus

@ The traditional syntax for procedures in the lambda-calculus uses
the Greek letter \ (lambda), and the grammar for the

lambda-calculus can be written as: We will give the semantics for the following extension of the
e = X|M.el|ee lambda-calculus:
X € Identifier (infinite set of variables) e = x|\xe|ee|c|succe
@ Brackets are only used for grouping of expressions. Convention x € lIdentifier (infinite set of variables)

for saving brackets: ¢ € Integer
e that the body of a A-abstraction extends “as far as possible.”
e For example, Ax.xy is short for Ax.(xy) and not (Ax.x)y.
e Moreover, ejeze;3 is short for (e162)e; and not e((ezxe3).

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 5/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 6/1

Big step semanics

Here is a big-step semantics with environments for the lambda-calculus.

w,v € Value
v u= ¢ | {hx.ep)
p € Environment
P = XV, XntVa
The semantics is given by five rules:
pFxsv (p(x)=v) (1
pF hx.er (hx.ep) (2)
pFeir{ixep’) prervv px—vEerw 3)
pFejespw
pkepe (4)
pketc
(Teal = [e1]+1) (5)

ptsucc ebca

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 7/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 8/1

Smallstep semanics

@ In small step semantics, one step of computation = either one
primitive operation, or inline one procedure call.
@ We can do steps of computation in different orders:
> (define foo
(lambda (x y) (+ (* x 3) y)))
> (foo (+ 4 1) 7)
22
Let us calculate:

(foo (+ 4 1) 7)
=> ((lambda (x y) (+ (x x 3) y))

(+ 4 1) 7)
=> (+ (« (+ 4 1) 3) 7)
=> 22
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 9/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 10/1

Small siep semantics (conto)

We can also calculate like this:

A variable x occurs free in an expression E iff x is not bound in E.Examples:
(foo

@ no variabl r free in the expression
+ 4 1) 7) o variables occur free in the expressio

(lambda (y) ((lambda (x) x) vy))

=> (foo 5 7) . . .
@ the variable y occurs free in the expression
=> ((lambda (x y) (+ (* x 3) y))

((lambda (x) x) y)
5 7)

An expression is closed if it does not contain free variables.
=> (+ (x 5 3) 7) A program is a closed expression.

=> 22

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 11/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 12/1

Methods of procedure application Methods of procedure application

Call by value Call by name (or lazy-evaluation)

((lambda (x) x)
((lambda (y) (+ y 9) 5))

((lambda (x) x)
((lambda (y) (+ y 9)) 5))

=> ((lambda (x) %) (+ 5 9)) => ((lambda {y) (+y 9)) 3)

=> ((lambda (x) x) 14) => (+59)

- 14 => 14

Avoid the work if you can
@ Example: Miranda and Haskell
Lazy or eager: Is one more efficient? Are both the same?

Always evaluate the arguments first
@ Example: Scheme, ML, C, C++, Java

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 13/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 14/1

Call by value - 100 cager?

Sometimes call-by-value reduction fails to terminate, even though
call-by- name reduction terminates.

(define delta (lambda (x) (x x)))
(delta delta)
=> (delta delta)
=> (delta delta)
=>

@ Q: If we run the same program using these two semantics, can we
get different results?
o A:
o If the run with call-by-value reduction terminates, then the run with
call- by-name reduction terminates. (But the converse is in general

false). Consider the program:
e If both runs terminate, then they give the same result.

(const (delta delta))
Church Rosser theorem (define const (lambda (y) 7))

@ call by value reduction fails to terminate; cannot finish evaluating
the operand.

@ call by name reduction terminates.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 15/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 16 /1

Summary - calling convention Beta reduction

@ A procedure call which is ready to be “inlined” is called a
e call by value is more efficient but may not terminate beta-redex. Example ((lambda (var) body) rand)

e call by name may evaluate the same expression multiple times. @ In lambda-calculus call-by-value and call-by-name reduction allow
the choosing of arbitrary beta-redex.

@ The process of inlining a beta-redex for some reducible
expression is called beta-reduction.

@ Lazy languages uses - call-by-need.
@ Languages like Scala allow both call by value and name!

((lambda (var) body) rand) body [var:=rand]

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 17/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 18/1

Subsitution

o Care must be taken to avoid name clashes. Example: @ The notation e[x := M] denotes e with M substituted for every free

((lambda (x) occurrence of x in such that a way that name clashes are avoided.
(lambda (y) (v x))) @ We will define e[x := M] inductively on e.
(y 5)) X[x == M| = M
X = = X
should not be transformed into {)[\x.e1)I[\)”(] = M| = {)\(X.:)y)
(Lambda (y) (y (v 5))) _ Oye)x=M = Iz((ely = 2])x = M)
@ The reference to y in (y 5) should remain free! (where x # y and z does not
@ The solution is to change the name of the inner variable name y to occur free in e; or M).
some name, say z, that does not occur free in the argument y 5. (e1€0)[x := M] = (e1[x := M])(eo[x := M])
c[x := M) = cC
((lambda (x) (succ ey)[x :=M] = succ (ei[x := M])
(Lambda (z) (z x))) @ The renaming of a bound variable by a fresh variable is called
(y 5)) alpha-conversion.
2| R ?
~> (lambda (2) (2 (y x))) ;; the y present. @ Q: Can we avoid creating a new variable in application®

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 19/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 20/1

Small step semantics Health card

Here is a small-step semantics with syntactic substitution for the A-calculus.

v € Value
v u= ¢ | Axe
The semantics is given by the reflexive, transitive closure of the relation
-y . .
A Big step semantic
—y C Expression x Expression . .
B Calling convention
(hx.e)v —y e[x =] (8) .
C Small step semantics
e1 v e @)
erey —y ehe; 4: Can teach myself, 3: Can teach with help, 2: Need a bit of help, 1: No clue.
!
€y —y e
———2 ®)
veéy—yv 82
succey —v ey ([ea] =[er]+1))
€1 —v ey (10)
SUCC €] —y SUCC €)
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 21 /1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 22 /1

Things to Do

Stu’'s Views © Stu_All Rights Reserved www.STUS.com

sfo
Questions? //

Answers are not guaranteed!

@ No class on Friday.

@ Meet the TA and get any doubts regarding the Assignment 1
cleared.

@ Prepare your snipers.

It's a shame the world is so full of conflict,
On the other hand, I'm asawpet:
Faculty of IITM!

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 23/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 24 /1

