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The role of the parser

—= IR

tokens
source .|
code scanner parser
errors
A parser

@ performs context-free syntax analysis

@ guides context-sensitive analysis

@ constructs an intermediate representation
@ produces meaningful error messages

@ attempts error correction

For the next several classes, we will look at parser construction
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Syntax analysis by using a CFG

Context-free syntax is specified with a context-free grammar.
Formally, a CFG G is a 4-tuple (V;,V,,, S, P), where:

V; is the set of terminal symbols in the grammar.
For our purposes, V; is the set of tokens returned by the
scanner.

V., the nonterminals, is a set of syntactic variables that
denote sets of (sub)strings occurring in the language.
These are used to impose a structure on the grammar.

S is a distinguished nonterminal (S € V,,) denoting the entire
set of strings in L(G).

This is sometimes called a goal symbol.

P is a finite set of productions specifying how terminals and
non-terminals can be combined to form strings in the
language.

Each production must have a single non-terminal on its
left hand side.

The set V =V,UV, is called the vocabulary of G ]
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Notation and terminology

@ ab,c,...€V;

@ AB,C,...€V,
e U VW, ...eV
® «.fB,7,...€ Vx
@ u,v,w,... € Vix

If A— ythen aAB = ayB is a single-step derivation using A — y

Similarly, —* and = denote derivations of > 0 and > 1 steps
If S —* B then B is said to be a sentential form of G
L(G)={we Vx|S="w}, weL(G) is called a sentence of G

Note, L(G) = {B € Vx| S —* B} NV
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 5/19

Derivations

We can view the productions of a CFG as rewriting rules.
Using our example CFG:

(goal) = (expr)

= (expr)(op) (expr)

= (expr)(op)(expr) {op) (expr)
= (id,x)(op)(expr) {op) {expr)
= (id,x) + (expr)(op) (expr)
= (id,x) + (num,2)(op) (expr)
= (id,x) 4 (num,2) * (expr)
= (id,x) + (num,2) * (id,y)

We have derived the sentence x + 2 * y.

We denote this (goal)—* id + num * id.

pause

Such a sequence of rewrites is a derivation or a parse.
The process of discovering a derivation is called parsing.
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Syntax analysis

Grammars are often written in Backus-Naur form (BNF).
Example:

1| (goal) == (expr)

2 o) =l on) )
4 | id

5| (op) = +

6 | -

7 |

8 o/

This describes simple expressions over numbers and identifiers.
In a BNF for a grammar, we represent

@ non-terminals with angle brackets or capital letters
@ terminals with t ypewriter font or underline
© productions as in the example
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Derivations

At each step, we chose a non-terminal to replace.
This choice can lead to different derivations.
Two are of particular interest:

leftmost derivation

the leftmost non-terminal is replaced at each step
rightmost derivation

the rightmost non-terminal is replaced at each step

The previous example was a leftmost derivation.
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Righimost derivaor

For the string x + 2 * y: @
(goal) = (expr)
= (expr)(op)(expr) “
= Eexpri (0?> (id>,y>
= (expr) * (id,y .
= (expr){op){expr) * (id,y) @ <>
= Eexpr; (0[2> (num,>2> Ek éid,>y> @ / e @
= (expr)+ (num,2) * (id,y . <id,y>
= (id,x) + (num,2) * (id,y) ?

Again, (goal)=" id + num * id. _
Treewalk evaluation computes (x + 2) x y
— the “wrong” answer!

Should be x + (2 * vy)
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Precedence Precedence

These two derivations point out a problem with the grammar.
It has no notion of precedence, or implied order of evaluation. Now, for the string x + 2 * y:
To add precedence takes additional machinery:

(goal) = (expr)

1| (goal) = (expr) = (expr) + (term)
2| (expr) = (expr)+ (term) = (expr) + (term) * (factor)
3 | {expr)— (term) = expt) + (term) » id.y)
4 | (term) = (expr) + (factor) * (id,y)
5| (term) = (term)x* (factor) = {expr) + (num,2) * (id,y)
6 | (term)/(factor) = (term)+ (num,2) * (id,y)
7 | (factor) = (factor) + (num,2) * (id,y)
8 | (factor) = num = (id,x)+ (num,2) * (id,y)
9 | id

This grammar enforces a precedence on the derivation: Again, (goal)=* id + num x id, but this time, we build the desired tree.

@ terms must be derived from expressions

@ forces the “correct” tree
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Precedence

*/

@ @ e

<id, x> <num, 2>

®
1)
—U

Treewalk evaluation computes x + (2 * vy)
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Ambiguity

May be able to eliminate ambiguities by rearranging the grammar:
(stmt) = (matched)

| (unmatched)

(matched) = if (expr) then (matched) else (matched)
| other stmts

(unmatched) = 1if (expr) then (stmt)

| if (expr) then (matched) else (unmatched)

This generates the same language as the ambiguous grammar, but
applies the common sense rule:

match each e1se with the closest unmatched t hen

This is most likely the language designer’s intent.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 15/19

Ambiguity

If a grammar has more than one derivation for a single sentential form,
then it is ambiguous
Example:
(stmt) = if (expr)then (stmt)
| if (expr)then (stmt)else (stmt)
| other stmts
Consider deriving the sentential form:

if E; thenif E; then §; else S,
It has two derivations.

This ambiguity is purely grammatical.
It is a context-free ambiguity.
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Ambiguity

Ambiguity is often due to confusion in the context-free specification.
Context-sensitive confusions can arise from overloading.
Example:

a = £(17)

In many Algol-like languages, £ could be a function or subscripted
variable. Disambiguating this statement requires context:

@ need values of declarations
@ not conte_xt-free
@ really an issue of type

Rather than complicate parsing, we will handle this separately.
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Parsing: the big picture Scanning vs. parsing

Where do we draw the line?

= [a—zA—z]([a—zA—2z]|[0-9])*

| Of[1—9Jfo—-9]

op u= +|=|x|/

expr = (term op)*term

parser Regular expressions are used to classify:

grammar ———™ > parser @ identifiers, numbers, keywords

generator @ REs are more concise and simpler for tokens than a grammar

@ more efficient scanners can be built from REs (DFAs) than
grammars

Context-free grammars are used to count:
@ brackets: (), begin...end, if...then...else
code IR @ imparting structure: expressions

Syntactic analysis is complicated enough: grammar for C has around
200 productions. Factoring out lexical analysis as a separate phasef

makes compiler more manageable.

Closing remarks

What did we do this week?
@ Overview of the compilation process.
@ Quick look at Lexical analysis.
@ Introduction to Parsing.
Reading:
@ Ch 1 and 3 from the Dragon book.

@ Recap from previous year : regular expressions and context free
grammars.

tokens

term

Our goal is a flexible parser generator system

4, &
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Announcement:
@ Next class: Wednesday 11AM.
@ Lab assignment — out! Due 17th Aug 2012.
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