CS3300 - Language Translators

Introduction

V. Krishna Nandivada

IIT Madras

The role of the parser

—= IR

tokens
source .|
code scanner parser
errors
A parser

@ performs context-free syntax analysis

@ guides context-sensitive analysis

@ constructs an intermediate representation
@ produces meaningful error messages

@ attempts error correction

For the next several classes, we will look at parser construction

V.Krishna Nandivada (lIT Madras) CS3300 - Aug 2012

3/19

Acknowledgement

These slides borrow liberal portions of text verbatim from Antony L.
Hosking @ Purdue and Jens Palsberg @ UCLA.

Copyright ©2012 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 2/19

Syntax analysis by using a CFG

Context-free syntax is specified with a context-free grammar.
Formally, a CFG G is a 4-tuple (V;,V,,, S, P), where:

V; is the set of terminal symbols in the grammar.
For our purposes, V; is the set of tokens returned by the
scanner.

V., the nonterminals, is a set of syntactic variables that
denote sets of (sub)strings occurring in the language.
These are used to impose a structure on the grammar.

S is a distinguished nonterminal (S € V,,) denoting the entire
set of strings in L(G).

This is sometimes called a goal symbol.

P is a finite set of productions specifying how terminals and
non-terminals can be combined to form strings in the
language.

Each production must have a single non-terminal on its
left hand side.

The set V =V,UV, is called the vocabulary of G]
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 4/19

Notation and terminology

@ ab,c,...€V;

@ AB,C,...€V,
e U VW, ...eV
® «.fB,7,...€ Vx
@ u,v,w,... € Vix

If A— ythen aAB = ayB is a single-step derivation using A — y

Similarly, —* and = denote derivations of > 0 and > 1 steps
If S —* B then B is said to be a sentential form of G
L(G)={we Vx|S="w}, weL(G) is called a sentence of G

Note, L(G) = {B € Vx| S —* B} NV
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 5/19

Derivations

We can view the productions of a CFG as rewriting rules.
Using our example CFG:

(goal) = (expr)

= (expr)(op) (expr)

= (expr)(op)(expr) {op) (expr)
= (id,x)(op)(expr) {op) {expr)
= (id,x) + (expr)(op) (expr)
= (id,x) + (num,2)(op) (expr)
= (id,x) 4 (num,2) * (expr)
= (id,x) + (num,2) * (id,y)

We have derived the sentence x + 2 * y.

We denote this (goal)—* id + num * id.

pause

Such a sequence of rewrites is a derivation or a parse.
The process of discovering a derivation is called parsing.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 7/19

Syntax analysis

Grammars are often written in Backus-Naur form (BNF).
Example:

1| (goal) == (expr)

2 o) =l on))
4 | id

5| (op) = +

6 | -

7 |

8 o/

This describes simple expressions over numbers and identifiers.
In a BNF for a grammar, we represent

@ non-terminals with angle brackets or capital letters
@ terminals with t ypewriter font or underline
© productions as in the example

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 6/19

Derivations

At each step, we chose a non-terminal to replace.
This choice can lead to different derivations.
Two are of particular interest:

leftmost derivation

the leftmost non-terminal is replaced at each step
rightmost derivation

the rightmost non-terminal is replaced at each step

The previous example was a leftmost derivation.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 8/19

Righimost derivaor

For the string x + 2 * y: @
(goal) = (expr)
= (expr)(op)(expr) “
= Eexpri (0?> (id>,y>
= (expr) * (id,y .
= (expr){op){expr) * (id,y) @ <>
= Eexpr; (0[2> (num,>2> Ek éid,>y> @ / e @
= (expr)+ (num,2) * (id,y . <id,y>
= (id,x) + (num,2) * (id,y) ?

Again, (goal)=" id + num * id. _
Treewalk evaluation computes (x + 2) x y
— the “wrong” answer!

Should be x + (2 * vy)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 9/19 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 10/19

Precedence Precedence

These two derivations point out a problem with the grammar.
It has no notion of precedence, or implied order of evaluation. Now, for the string x + 2 * y:
To add precedence takes additional machinery:

(goal) = (expr)

1| (goal) = (expr) = (expr) + (term)
2| (expr) = (expr)+ (term) = (expr) + (term) * (factor)
3 | {expr)— (term) = expt) + (term) » id.y)
4 | (term) = (expr) + (factor) * (id,y)
5| (term) = (term)x* (factor) = {expr) + (num,2) * (id,y)
6 | (term)/(factor) = (term)+ (num,2) * (id,y)
7 | (factor) = (factor) + (num,2) * (id,y)
8 | (factor) = num = (id,x)+ (num,2) * (id,y)
9 | id

This grammar enforces a precedence on the derivation: Again, (goal)=* id + num x id, but this time, we build the desired tree.

@ terms must be derived from expressions

@ forces the “correct” tree
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 11/19 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 12/19

Precedence

*/

@ @ e

<id, x> <num, 2>

®
1)
—U

Treewalk evaluation computes x + (2 * vy)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 13/19

Ambiguity

May be able to eliminate ambiguities by rearranging the grammar:
(stmt) = (matched)

| (unmatched)

(matched) = if (expr) then (matched) else (matched)
| other stmts

(unmatched) = 1if (expr) then (stmt)

| if (expr) then (matched) else (unmatched)

This generates the same language as the ambiguous grammar, but
applies the common sense rule:

match each e1se with the closest unmatched t hen

This is most likely the language designer’s intent.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 15/19

Ambiguity

If a grammar has more than one derivation for a single sentential form,
then it is ambiguous
Example:
(stmt) = if (expr)then (stmt)
| if (expr)then (stmt)else (stmt)
| other stmts
Consider deriving the sentential form:

if E; thenif E; then §; else S,
It has two derivations.

This ambiguity is purely grammatical.
It is a context-free ambiguity.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 14/19

Ambiguity

Ambiguity is often due to confusion in the context-free specification.
Context-sensitive confusions can arise from overloading.
Example:

a = £(17)

In many Algol-like languages, £ could be a function or subscripted
variable. Disambiguating this statement requires context:

@ need values of declarations
@ not conte_xt-free
@ really an issue of type

Rather than complicate parsing, we will handle this separately.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 16/19

Parsing: the big picture Scanning vs. parsing

Where do we draw the line?

= [a—zA—z]([a—zA—2z]|[0-9])*

| Of[1—9Jfo—-9]

op u= +|=|x|/

expr = (term op)*term

parser Regular expressions are used to classify:

grammar ———™ > parser @ identifiers, numbers, keywords

generator @ REs are more concise and simpler for tokens than a grammar

@ more efficient scanners can be built from REs (DFAs) than
grammars

Context-free grammars are used to count:
@ brackets: (), begin...end, if...then...else
code IR @ imparting structure: expressions

Syntactic analysis is complicated enough: grammar for C has around
200 productions. Factoring out lexical analysis as a separate phasef

makes compiler more manageable.

Closing remarks

What did we do this week?
@ Overview of the compilation process.
@ Quick look at Lexical analysis.
@ Introduction to Parsing.
Reading:
@ Ch 1 and 3 from the Dragon book.

@ Recap from previous year : regular expressions and context free
grammars.

tokens

term

Our goal is a flexible parser generator system

4, &

18/19

Announcement:
@ Next class: Wednesday 11AM.
@ Lab assignment — out! Due 17th Aug 2012.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 19/19

