Optimization of Basic blocks

- It is a linear piece of code.
- Analyzing and optimizing is easier.
- Has local scope - and hence effect is limited.
- Substantial enough, not to ignore it.
- Can be seen as part of a larger (global) optimization problem.

DAG representation of basic blocks

Recall: DAG representation of expressions
- leaves corresponding to atomic operands, and interior nodes corresponding to operators.
- A node N has multiple parents - N is a common subexpression.
- Example: $(a + a * (b - c)) + ((b - c) * d)$

DAG construction for a basic block

- There is a node in the DAG for each of the initial values of the variables appearing in the basic block.
- There is a node N associated with each statement s within the block. The children of N are those nodes corresponding to statements that are the last definitions, prior to s, of the operands used by s.
- Node N is labeled by the operator applied at s, and also attached to N is the list of variables for which it is the last definition within the block.
- Certain nodes are designated output nodes. These are the nodes whose variables are live on exit from the block.

Optimizations on the DAG

- Common subexpression elimination.
- Eliminate dead code.
- Code reordering.
- Algebraic optimizations.
Construct the DAG. Example

\[
\begin{align*}
 a &= b + c \\
 b &= a - d \\
 c &= b + c \\
 d &= a - d
\end{align*}
\]

Example (contd)

\[
\begin{align*}
 a &= b + c \\
 d &= a - d \\
 c &= d + c \\
 \text{// if } b \text{ is live} \\
 b &= d
\end{align*}
\]

Q: How to know if \(b \) is live after the basic block?

Limitations of the DAG based CSE

\[
\begin{align*}
 a &= b + c \\
 b &= b - d \\
 c &= c + d \\
 e &= b + c
\end{align*}
\]

- The two occurrences of the sub-expressions \(b + c \) computes the same value.
- Value computed by \(a \) and \(e \) are the same.
- How to handle the algebraic identities?
- Q: Do the sub-expressions always compute the same value?

Dead code elimination

- Delete any root from DAG that has no ancestors and is not live out (has no live out variable associated).
- Repeat previous step till no change.

- Assume \(a \) and \(b \) are live out.
- Remove first \(e \) and then \(c \).
- \(a \) and \(b \) remain.
CSE via Algebraic identities

- Recall: In common sub-expression elimination, we want to reuse nodes that compute the same value.
- Recall: We mainly focussed on syntactic similarities.
- Q: Can we go beyond that?

Similarities in the semantics - identity, inverse, zero

- \(x + 0 = 0 + x = x \)
- \(x \times 1 = 1 \times x = x \) \(\text{identity, examples?}\)
- \(a \&\& \text{true} = \text{true} \&\& a = a \)
- \(a || \text{false} = \text{false} || a = a \)
- \(x \times 0 = 0 \times x = 0 \)
- \(0 / x = 0 \)

Goal: apply arithmetic identities to eliminate computation.

Similarities in the semantics - strength

- \(x^2 = x \times x \)
- \(2 \times x = x + x = x << 1 \) (?)
- \(x/2 = x \times 0.5 = x >> 1 \) (?)

Constant folding

- \(2 \times 0.123456789101112131415 = 0.246913578202224262830 \)
 Chapernowne's constant

Goal: identify equivalence module strength reduction operations.

Algebraic properties

- Commutative: Say the operator \(\times \) is commutative. \(x \times y = y \times x \)
- Associative: \(a + (b - c) = (a + b) - c \)
 \(a = b + c \)
 \(e = c + d + b \)
 \(\rightarrow \)
 \(a = b + c \)
 \(t = c + d \)
 \(a = t + b \)
 \(\rightarrow \) (assuming \(t \) is not used anywhere else)
 \(a = b + c \)
 \(e = a + d \)
- \(a = b - 1; c = a + 1 \rightarrow c = b \)
How to?

In general the problem is that of checking equivalence of two expressions – Undecidable!

A rough idea:
- When creating the DAG, create the node for expression that has the most reduced strength.
- For each expression e,
 - Take all “sub-expressions” that “build” the operands of e.
 - Build a new large expression using these sub-expressions.
 - Simplify the large expression.
 - Check if the simplified expression (or part thereof) or any variations thereof can be found in the tree.
 - Build sub-tree for the rest.

Restrictions

- The language manual may restrict.
 - Fortran: you can evaluate any equivalent expression, but cannot violate the integrity of paranthesis.
 - Thus $x * y - x * z \rightarrow x * (y - z)$
 - But $a + (b - c) \neq (a + b) - c$

- Keep a language manual handy if you are writing a compiler!

Representing Array accesses in the DAG

$x = a[i]$
$a[j] = y$
$z = a[i]$

Q: Is $a[i]$ a common sub-expression?

Array representation (2)

$b = a + 12$
$x = b[i]$
$b[j] = y$

Q: Say, elements of ‘a’ are 4bytes size

Home reading: How to handle pointers.
Peephole optimization

- A local optimization technique.
- Simplistic in nature, but effective in practice.
- Idea:
 - Keep a sliding window (called peephole)
 - Replace instruction sequences within the peephole by an efficient (shorter / faster / . . .) sequence.

V.Krishna Nandivada (IIT Madras) | CS3300 - Aug 2012 | 17 / 26

Eliminating redundant loads and stores

Load a, R0
Store R0, a

Delete the pair of instructions. Always?

What if there is a label on the store instruction?

We need to be sure that the Store instruction and Load are executed as a pair.

Why would we have such stupid code?

V.Krishna Nandivada (IIT Madras) | CS3300 - Aug 2012 | 19 / 26

Peephole optimization

- The “peephole” is typically small. Why?
- The code in the peephole need not be contiguous.
- Each improvement may lead to additional improvements.
- In general, we may have to make multiple passes.

V.Krishna Nandivada (IIT Madras) | CS3300 - Aug 2012 | 18 / 26

Eliminating unreachable code

- An unlabelled statement after an unconditional jump – can be removed.
go to L2
INCR R0
L2:

- Eliminating jumps over jumps:
 - if class == 2010 goto L1
 - goto L2
 - L1: print 22
 - L2:
 →
 - if class != 2010 goto L2
 - print 22
 - L2:

- What can constant propagation do?

V.Krishna Nandivada (IIT Madras) | CS3300 - Aug 2012 | 20 / 26
Flow-of-control optimizations

- Naive code generation creates many jumps.
- Jumps to jumps can be short circuited!

 \[
 \text{goto L1} \\
 \ldots \\
 \text{L1: goto L2}
 \]

 Can be replaced with

 \[
 \text{goto L2} \\
 \ldots \\
 \text{L1: goto L2}
 \]

 Further optimizations on L1 are possible.

Algebraic simplification and strength reduction

- Eliminate identity operations.
- Replace x^2 by $x \times x$, and so on.
- Replace fixed-point mult by a power of two (by left-shift) and division by a power of two (by right shift).
- Replace floating-point division by multiplication!

Machine specific peephole optimization

- Use auto-increment / auto-decrement if available.

 \[
 \text{add r1, (r2)+} \\
 \rightarrow r1 = r1 + M[r2]; r2 = r2+d
 \]

- A cool PA-RISC instruction called sh2add

 \[
 r2 = r1 \times 5 \\
 \rightarrow \text{sh2add r1, r1, r2}
 \]

- PA-RISC instruction \text{ADDBT, <= r2, r1, L1}

Peephole procedure

- First make a list of patterns that you want to replace with a list of target patterns.
- Identify the pattern in the code and do the replacement.
- Iterate till you are done.
- Can be efficiently done on an DAG.
- No guarantees about optimality.
- Most of the peephole optimizations guarantee improvement.