
Constant Propagation with Conditional
Branches

MARK N. WEGMAN and F. KENNETH ZADECK

IBM T. J. Watson Research Center

Constant propagation is a well-known global flow analysis problem. The goal of constant

propagation is to discover values that are constant on all possible executions of a program and to

propagate these constant values as far forward through the program as possible. Expressions

whose operands are all constants can be evaluated at compile time and the results propagated

further. Using the algorithms presented in this paper can produce smaller and faster compiled

programs. The same algorithms can be used for other kinds of analyses (e.g., type determina-

tion). We present four algorithms in this paper, all conservative in the sense that all constants

may not be found, but each constant found is constant over all possible executions of the

program. These algorithms are among the simplest, fastest, and most powerful global constant

propagation algorithms known. We also present a new algorithm that performs a form of

interprocedural data flow analysis in which aliasing information is gathered in conjunction with

constant propagation. Several variants of this algorithm are considered.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs

and Features— data types and structures; procedures, functions and subroutines; D. 3.4 [Pro-

gramming Languages]: Processors-code generation; compilers; optimization, preprocessors;
I. 2.2 [Artificial Intelligence]: Automatic Programming-program trans~ormation

General Terms: Algorithms, Design, Languages, Theory

Additional Key Words and Phrases: Abstract interpretation, code optimization, constant propa-

gation, control flow graph, interprocedural analysis, procedure integration, static single assign-

ment form, type determination

1. INTRODUCTION

Constant propagation is a well-known global flow analysis problem. The goal

of constant propagation is to discover values that are constant on all possible

executions of a program and to propagate these constant values as far

forward through the program as possible. Expressions whose operands are all

constants can be evaluated at compile time and the results propagated

further. Using the algorithms presented in this paper can produce smaller

and faster compiled programs.

A preliminary version of this paper appeared in Conference Record of the Twelfth ACM

Symposium on Principles of Programming Languages, 1985.

Authors’ current addresses: Mark N. Wegman, IBM T. J. Watson Research Center, P.O. Box

704, Yorktown Heights, NY 10598; F. Kenneth Zadeck, Dept. of Computer Science, Brown

University, P.O. Box 1910, Providence, RI 02912.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

@ 1991 ACM 0164-0925/91/0400-0181 $1.25

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 2, April 1991, Pages 181-210.

182 . M. N. Wegman and F. K. Zacteck

While the constant propagation problem is easily shown to be undecidable

in general (see Kam and Unman [25], for example), there are many reason-

able instances of the problem that are decidable and for which computation-

ally efficient algorithms exist. We present four such algorithms in this paper.
Each algorithm presented here is conservative in the sense that all constants

may not be found, but each constant found is constant over all possible

executions of the program.

After some preliminaries, the algorithms are presented in Section 3 in

order of increasing power; each successive algorithm finds at least the

constants found by the previous algorithm. The first three algorithms are

reformulations of the work of others; the fourth is new and contains the best

features of each of the previous three. These algorithms are among the

simplest, fastest, and most powerful global constant propagation algorithms

known. In Section 4 our algorithm is proven to be correct and at least as

powerful as the best prior algorithms with polynomial-time bounds. In Sec-

tion 5 some common implementation problems are discussed.

In Section 6 several techniques are explored to perform constant propaga-

tion over an area larger than single procedures. In Section 6.2 the relation-

ship between constant propagation and procedure integration is discussed.

Section 6.3 gives a new algorithm that performs a form of interprocedural

data flow analysis in which aliasing information is gathered in conjunction

with constant propagation.

Section 7 outlines some open problems and Section 8 concludes the paper.

1.1 Uses for Constant Propagation Algorithms

Constant propagation techniques serve several purposes in optimizing

compilers:

—Expressions evaluated at compile time need not be evaluated at execution

time. If such expressions are inside loops, a single evaluation at compile

time can save many evaluations at execution time.

–Code that is never executed can be deleted. Unreachable code (a form of

dead code) is discovered by identifying conditional branches that always

take one of the possible branch paths.

—Detection of paths never taken simplifies the control flow of a program.

The simplified control structure can aid the transformation of the program

into a form suitable for vector processing (see Furtney and Pratt [20] and
Pratt [31]) or parallel processing (see Ellis [171).

—Since many of the parameters to procedures are constants, using constant

propagation with procedure integration can avoid the expansion of code

that often results from naive implementations of procedure integration.

—Constant propagation can be done over a variety of domains, for example,

over the type fields of values.

2. PRELIMINARIES

In this section we introduce the mathematical notation used to represent

programs and values.

ACM Transactions on Programming Languages and Systems, Vol 13, No, 2, April 1991

Constant Propagation With Conditional Branches . 183

2.1 Graph Definitions

Since an algorithm’s performance is usually specified in terms of the size of

its input, it is necessary to define some common measures of program size:

N

E

v

We

is the number of assignment statements plus the number of expres-

sions whose value is branched on in the program. For notational

convenience, each node in the program flow graph contains one expres-

sion. This number also closely approximates the number of definition

sites in the program since most statements assign a value.

is the number of edges in the program flow graph. A reasonable

approximation for E is twice N, since conditional statements typically

have only two successors. 1

is the number of variables in the program.

say that a program consist of three types of nodes: conditional nodes,

- ‘Conditional nodes are potentialassignment nodes; an-d a unique start node. 2

deviations in control flow through a program. An expression is evaluated at a

conditional node and control is subsequently transferred to another node; for

simplicity, assume that such expressions have no side effects. Assignment

nodes are sites at which variables are defined in terms of other variables and

constants; for simplicity, assume that only scalar (i.e., nonsubscripted) vari-

ables participate in assignment nodes (see Section 7). In procedures with

multiple entry points, the start node has out-edges to any entry node of the

procedure.

2.2 The Lattice for Constant Propagation

The output of a constant propagation algorithm is an output assignment of

lattice values to variables at each node in the program. Let all variables

defined or used within a given assignment or conditional node be character-

ized by a lattice element that represents compile-time knowledge about the

value of such variables during execution of the algorithm. As depicted in

Figure 1, the lattice element can be one of three types: the highest element is

top, T, the lowest is bottom, L, and all elements in the middle are constant,

‘e. There is an infinite number of %, lattice elements, each corresponding to

a different constant i. In the lattice-theoretic sense, no constant is higher or

lower than any other. Each node of the program has cells, called LatticeCells,

to hold the lattice elements; the values stored in these elements change as

the algorithm progresses. The LatticeCells are associated with the results

and operands of the expressions; the details of the association depend on the

particular algorithm.

lThis has been experimentally verified by Pratt [31] and Allen [4], and is true because most

structured programming constructs give rise to programs with binary branches. One common

exception is the computed goto statement in Fortran, which can give rise to graphs with up to

N2 edges if the targets of the goto’s are all of the other statements in the program; such
programe are very rare.

2It is possible that the start node could have a branch to every other statement in the program,

giving rise to a program in which the number of edges was three times the number of nodes.

Such a program would, however, be extremely rare.

ACM Transactions on Programming Languages and Systems, Vol. 13, No 2, April 1991

184 . M N. Wegman and F. K. Zadeck

Fig. 1. The three-level lattice.

At the end of constant propagation, assigning a constant % to a LatticeCell

means that on all possible executions of the program, the associated result or

operand always has the same value when that node is exited. Assigning 1

means that a constant value cannot be guaranteed and assigning T means

that the variable may be some (as yet) undetermined constant. Upon termi-

nation of a constant propagation algorithm, all LatticeCells are either % or

~ at executable nodes.

The algorithms start with the optimistic assignment of T to the Lattice-

Cell of all operands of expressions at all nodes except the start node. If the

variable has an explicit initializer or if the language specifies an implicit

initializer (e. g., in LISP, all cells are initialized to nil), then that value is

used at the start node. The algorithms may obtain better information if T,

rather than 1, is assigned to the values of uninitialized variables at the

entry of the program. In languages in which the use of an uninitialized

variable is allowed but undefined (as in FORTRAN), the use of T may make

the analysis yield an incorrect result. Thus, each uninitialized variable must

be assigned 1. On the other hand, if the language forbids such uses, the

uninitialized variables may be assigned T.

The algorithms proceed by lowering (in the lattice-theoretic sense) the

LatticeCells of the operands and results at each node as more information is

discovered, a process that continues until a fixed point is achieved. The

additional information is inserted by applying the meet (n) rules shown in

Figure 2, where each of the operand values at a node corresponds to the

conditions prior to the execution of the statement, These rules ensure that

the value at the join point is no higher than the value entering from any of

the predecessors.

ACM Transactions on Programmmg Languages and Systems, Vol 13, No 2, April 1991

Constant Propagation With Conditional Branches . 185

any V true = true
Fig. 3. Special rules for A andv.

any A false =false

J-5

If I=j then l+l+l

If a variable is not

Fig. 4. A conditional branch where information about 1 can be

derived.

the target of an assignment statement in a node, its

value is unchanged by the node. If the node is an assignment statement, the

value of the result and the value of operands of other nodes may change and

are reevaluated according to the expression evaluation rules: the value of the

operands of an expression corresponds to the value of the variables at the

entrance to the node, and the result corresponds to the value of variables that

change during the execution of the node.

Usually, if the node is an assignment and any of the variables used in its

expression portion has a value of L , the value exiting the assignment

statement for that variable is L . If all values used in its expression portion

are constant, the value of the assigned variable is the value of the expression

when evaluated with those constant values. Otherwise the value assigned is

1.
For certain operators, however, we can give special expression rules that

yield better information. For example, if the operator is an v and one of the

operands is known to be true, then the value of the expression is true

whether or not the other operand is L . These rules are given in Figure 3.

Information can sometimes be derived from the equality tests that control

conditional branches [21. On entrance to the then branch in Figure 4, the

value of i is 5. We can modify the program so that we can derive this

information by inserting extra nodes containing assignments between the

conditional and the entrance to the then branch. The variable i is assigned

the join of the LatticeCells of i and j (a similar assignment to j is also

added). These are not assignment statements in the ordinary sense, because

they are not used to cause changes in the program’s state and need not be

executed; rather, they are used to model changes in the assertions about the

program state and, thus, are in the intermediate code.

In the algorithms below, the changes in the LatticeCells associated with

the operands may require an expression to be reevaluated many times. In

Section 5.4, we show how to do all of the reevaluations of a given expression
in time proportional to the size of the expression.

3. CONSTANT PROPAGATION ALGORITHMS

In this section we present four algorithms for determining constants. They

are described in order of increasing power; each algorithm finds at least the

constants found by the previous algorithm. These algorithms are among the
simplest, fastest, and most powerful global constant propagation algorithms

known. The first three algorithms are reformulations of the work of others;

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 2, April 1991.

186 . M. N. Wegman and F. K. Zadeck

Simple more constants
Conditional

Constant
*

Constant

1 J [I

Ifaster faster

+ t
I I I I

Sparse more constants Sparse

Simple * Conditional

Constant Constant

Fig 5. Relationship among the four constant propagation algorithms

the fourth is new and contains the best features of each of the previous three.

Figure 5 shows the relationship among the four algorithms.

The first algorithm, Simple Constant (SC), was developed by Kildall [261

and is presented in Section 3.1. Kildall was among the first to describe the

constant propagation problem and to give an algorithmic solution.

The second algorithm, Sparse Simple Constant (SSC), is an easily under-

stood reformulation of an algorithm developed by Reif and Lewis [32] and is

presented in Section 3.2. This algorithm uses a recently developed data

structure called the static single assignment graph (SSA graph) [16]. The SSA

graph is a variant of the global value graph of Reif and Lewis [321, which in

turn is based on the p-graph of Shapiro and Saint [401. The SSA graph allows

this algorithm to find a class of constants equivalent to those of SC, yet the

algorithm is faster than SC by a factor proportional to the number of

variables in the program. Indeed, the speedup can be proportional to the

product of the number of variables in the program and the number of edges

in the program flow graph. It is unfortunate that this algorithm was not

recognized for many years, since it works in time linear in the size of the SSA

graph.

The third algorithm, Conditional Constant (CC), is a variant of Wegbreit’s

Algorithm 3.1 [42] and is presented in Section 3.3. CC discovers all constants

that can be found by evaluating all conditional branches with all constant

operands, but it uses the same input data structures and is asymptotically as

slow as SC. The attraction of CC is that it propagates the values in such a
way that when conditional branches are found to have a constant conditional

expression, the search for constants can ignore parts of the program that are

never executed. The algorithm does unreachable code elimination in combi -

nation with constant propagation. The first benefit of this approach is that

the algorithm may run faster than SC, since it need not evaluate the sections

of the program that are never executed. A second benefit is that values

created in the unreachable areas cannot possibly kill potential constants, and

thus CC can find more constants than can SC.

ACM TransactIons on Programmmg Languages and Systems, Vol 13, No 2, April 1991

Constant Propagation With Condltlonal Branches . 187

The fourth algorithm, Sparse Conditional Constant (SCC), is new and is

presented in Section 3.4. SCC finds the same class of constants as CC, yet has

the same speedup over CC as SSC has over SC.

3.1 Simple Constant

Kildall’s Simple Constant (SC) algorithm [261 uses the program flow graph

for propagation of values. At each node in the program, two LatticeCells are

associated with the value of every variable in the program, one with the

value at entry to the node and the other with the exit. The process of visiting

a node involves examination of every LatticeCell at that node. Initially the

start node is placed on the worklist. A node is chosen from the worklist,

removed from the worklist, and examined. The lattice value stored at the

entry to the examined node becomes the meet of values at the exits of

preceding nodes. The statement is evaluated on the basis of the new entering

values. This may cause the value of a variable that it is assigned to in the

node to differ from the value associated with the variable at the exit

LatticeCell. In that case all nodes following the examined node must be

examined, and they are added to the worklist. If no exit LatticeCells change,

then no nodes are added to the worklist. The process repeats until the

worklist is empty.

SC finds those constants that Kildall calls simple constants. Simple con-

stants are all values that can be proved to be constant subject to two

constraints: no information is assumed about which direction branches will

take, and only one value for each variable is maintained along each path in

the program.

Since the lattice value of each variable can only be lowered twice, each

node may be visited at most 2 x V x 1 times, where 1 is the number of

in-edges into that node. Thus, the time required for Kildall’s algorithm is

0(E x V) node visits and V operations during each node visit. This results

in a worst-case running time of 0(E x V 2). The best-case running time may

be 0(E x V). It is our intuition that the worst case is rarely achieved. The

space required is O(N x V).

We have described the problem in somewhat different terms from Kildall.

In Kildall’s lattice, each lattice element corresponds to the state of all

variables in the program. In our lattice, each state corresponds to the state of

a single variable. By using our representation and a technique described in

Section 5.4, it is possible to lower the time bound to O(E x V) changes to

variable values, which is the best one can hope to get out of an approach like

this. These optimizations are not obvious in the context presented by Kildall.

We have initialized the worklist with only the start node, where Kildall

started with all of the nodes on the worklist. This is consistent with and

required for the other algorithms presented in this paper, but does not affect

SC in any significant way.

When SC visits a node, it applies a function that takes as input the value of
all variables at the enh-ante of the node and produces the set of values for all

variables at the exit of the node. In the next section we reformulate that

notion in order to model more closely what Reif and Lewis [32, 33] did and

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 2, April 1991.

188 . M. N. Wegman and F. K. Zadeck

what we do. This reformulation of SC allows the SSC algorithm to run faster

than SC, but produces the same information as SC.

3.2 Sparse Simple Constant

Reifs and Lewis’s Sparse Simple Constant (SSC) algorithm [32, 331 finds all

simple constants. It achieves a speedup over SC by using a sparse representa-

tion (in the presentation here, the SSA graph) to propagate the values

through the program. The class of constants found is unchanged.

3.2.1 The Static Single Assignment Graph. In SSA form, the program is

transformed so that only one assignment can reach each use. For straight-line

programs, the transformation to SSA form is straightforward. Each assign-

ment to a variable is given a unique name (shown as a subscript in Figure 6)

and all of the uses reached by that assignment are renamed to match the

assignment’s new name. More complicated programs have branch and join

nodes. At the join nodes, we must add a special form of assignment called a

~-fzmction. A @-function at the entrance to a node X has the form V +

@l(R, s, . . .), where V, R, S, . . . are variables. The number of operands

R, S, . . . is the number of control flow predecessors of X. The predecessors of

X are listed in some arbitrary fixed order, and the jth operand of @ is

associated with the jth predecessor. If control reaches X from its jth

predecessor, then V is assigned the value of the jth operand. Each execution

of a @-function uses only one of the operands, but which one depends on the

flow of control just before entering X. Any d-functions at X are executed

before the ordinary statements in the node that contributes X to the program

flow graph. Figure 7 shows the use of @-functions in SSA form and Figure 8

gives the SSA form of a simple program with loops.

In general, two separate steps are required to translate a program into SSA

form. In the first step, some trivial +-functions V + 4(V, V, . ..) are inserted

at some of the join nodes in the program flow graph. In the second step, new

variables V, (for i = O, 1,2, . . .) are generated to serve as new names for each

variable V. Each mention of V in the program is replaced by a mention of

one of the new names V,. (A mention may be on either side of an assignment

statement and may be in an ordinary assignment or in a o-function.) A

program is defined to be in SSA form if, for every original variable V, trivial

~-functions for V have been inserted and each mention of V has been

changed to a mention of a new name V, such that the following conditions

hold:

(1) If a program flow graph node Z is the first node common to two nonnull

paths X $ Z and Y * Z that start at nodes X and Y containing assign-

ments to V, then a @function for V has been inserted at Z.

(2) Each new name V, for V is the target of exactly one assignment state-

ment in the program text.

(3) Along any program flow path, consider any use of a new name V, for V

(in the transformed program) and the corresponding use of V (in the

original program). Then V and V, have the same value.

ACM Transactions on Programming Languages and Systems, Vol. 13, No 2, April 1991,

Constant Propagation WNh Conditional Branches . 189

V+l

. . . +V+l
.J 4-2

. . . +V+2

Vl+l

+- Vl+l Fig. 6. Straight-line code andits single assignment
V2*2 version.

+V2+2

if P

Fig. 7. An if -then -else andits single assign- then v- 1

ment version. else v- 2

+V+2

~+-1

]+1

k+l

while (P)

if (Q)

then do

j+l
k+k+l

end

else k+k+2

end

11+1

jl+l
klel

while (P)

3Qt@(Jq, J,)

k2~4(k5, kl)

If (Q)

then do

j3- 11
k~-kz+l

end

else k4- k2+2

34-I$(JS, j,)

k~-+(k~, k4)

end

if P

then vi+ 1

else v2 + 2

v~+ dl(vi, V*)
+V3+2

Fig. 8. A simple program and its

single assignment version.

Once a program is in SSA form, we add connections called SSA edges.

Each connection goes from the unique point where a variable is given a value

to a use of that variable. SSA edges are essentially clef-use chains [1] in the

SSA program.

A program is in minimal SSA form if it is in SSA form and if the number

of +-functions inserted is as small as possible, subject to Condition 1 above.

The optimizations that depend on SSA form are still valid if there are some

extraneous @functions beyond those that would appear in minimal SSA

form. However, extraneous @functions sometimes inhibit other optimization

by concealing useful facts [5], and they always add unnecessary overhead to

the optimization process itself. Thus it is important to place @functions only

where they are required.

For any variable V, the program flow graph nodes at which we should

insert @functions in the original program can be defined recursively by

Condition 1 in the definition of SSA form. A node Z needs a O-f’unction for V

if Z is the first node that two nonnull program flow paths have in common,

when those two paths originate at two different nodes containing assign-

ments to V or needing d-functions for V, Nonrecursively, we may observe

that a node Z needs a o-function for V because Z is the first node common to

two normull paths X * Z and Y * Z that start at nodes X and Y containing

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 2, April 1991.

190 . M. N. Wegman and F. K. Zadeck

assignments to V. If Z does not already contain an assignment to V, then the

@-function inserted at Z adds Z to the set of nodes that contain assignments

to V. With more nodes to consider as origins of paths, we may observe that

more nodes appear as the first node common to two nonnull paths originating

at nodes with assignments to V. The set of nodes observed to need @func-

tions thus gradually increases until it stabilizes. When +-functions are placed

in this way, minimal SSA form can be obtained by an easy adaptation of

well-known def-use chaining. The algorithm presented in [16] obtains the

same end results as this brute-force approach, but it places the +-functions

and performs the renaming in much less time than brute force would require.

Minimal SSA form is a refinement of Shapiro’s and Saint’s [40] notion of a

pseudo-assignment. The pseudo-assignment nodes for V are exactly the

nodes that need d-functions for V. For a program flow graph with E edges

describing a program with V variables, one algorithm [34] requires O(EcY(E))

bit vector operations (where each vector is of length V) to find all the

pseudo-assignments. A simpler algorithm [38] for reducible programs com-

putes SSA form in time 0(E x V). Both of these algorithms are effectively

quadratic, and the algorithm in [38] sometimes uses extraneous @-functions.

The method presented in [16] is effectively linear in the size of the program

although there are cases where it behaves nonlinearly.

3,2.2 The Algorithm. SSC works as follows:3

(1) Examine all expressions. If it is not possible that the value of an
expression will be evaluated at compile time (for example, a read state-

ment), then the corresponding LatticeCell is assigned ~ . If no variables

appear in the expression, then the expression is evaluated and the

LatticeCell is assigned an appropriate %,. All other LatticeCells are

assigned T.

A worklist is initialized to contain all SSA edges where the definition is

from an expression that has a LatticeCell that is not T.

(2) The algorithm terminates when the worklist becomes empty.

(3) An SSA edge is taken off the worklist. We form the meet of the value of
the LatticeCell at the definition end of the SSA edge and the value of the

LatticeCell at the use end of the SSA edge. The meet is performed under

the rules given in Section 2.2.

(4) If the meet of the values is different from the value at the use end, then
the use end is replaced by the meet. The new value is used to recompute

the value of the expression in which the previous value had been used,

again according to the expression rules in Section 2.2. If the new value

for the expression is lower than the value stored for the expression, then

all SSA edges with their source at this node are added to the worklist.

3SSC as originally presented used a global value graph as its sparse representation; here we use

the SSA graph, which is a variant. These two representations produce equivalent results when

used with this algorithm.

ACM Transactions on Programming Languages and Systems, Vol 13, No 2, April 1991

Constant Propagation With Conditional Branches . 191

3.2.3 Asymptotic Complexity. The time complexity of this algorithm is

proportional to the size of the SSA graph. The SSC algorithm requires that

each SSA edge be examined at least once and at most twice. The examina-

tions occur when the value of its definition site is lowered to either % or J- .

In theory the size can be 0(E x V), but empirical evidence indicates that the

work required to compute the SSA graph is linear in the program size [16].

Thus, we expect our algorithm to be linear in practice.

3.3 Conditional Constant

Wegbreit’s Algorithm 3,1 [42] is a general algorithm for performing global

flow analysis that takes conditional branches into account. In this section, we

specialize Wegbreit’s general algorithm to perform constant propagation and

call the result Conditional Constant (CC). CC is more powerful than SC

because, whenever CC can assume that a conditional expression is always

constant, it assumes that the branch it guards goes in only one direction.

Consider the example in Figure 9. Neither SC nor SSC is capable of

discovering that j = I since they make no assumptions about the possible

branch directions. Since i is always 1, however, the condition always takes

the true branch and j is always equal to 1. Such code may be the result of

procedure integration or abstract data type compilation.

To exploit this knowledge about conditional branches, we do not propagate

values along all program flow graph edges, as in SC. Rather, CC defers the

evaluation of any program flow graph edge until it is marked as executable.

Each program flow graph edge is initially marked as not executable. Pro-

gram flow graph edges are marked executable by symbolically executing the

program, beginning with the start node. Whenever an assignment node is

executed, the out-edge in the program flow graph leaving that node is

marked as executable and added to the worklist. Whenever a conditional

node is executed, the expression controlling the conditional is evaluated and

we determine which branch(es) may be taken. If the expression evaluates to

~ , then all branches may be taken. The edges corresponding to these

branches are added to the worklist. If the expression evaluates to %?,only one

branch can be taken, and the associated edge is added to the worklist.

This algorithm is able to ignore any definition that reaches a use via a

program flow graph edge that is never executed. Thus, this algorithm accom-

plishes a form of dead code elimination called unreachable code elimination.4

This algorithm has the same asymptotic running time as SC, O(E x V2)

in the worst case in which no branches are found to be constant. This

algorithm is expected to have better average-case complexity, however, since

it can ignore parts of the program that will never be executed and since SC

should behave better than 0(E x V 2).

4Tw0 classical techniques are called dead code elimination. The goal of the first, unreachable

code elimination, is to eliminate code that can never be executed. The goal of the other, unused

code ezimimztion, i~ to delete sections of code whose results are never used (see Allen and Cocke

[21). Each of these techniques finds a different class of dead code, and neither subsumes the

other.

ACM Transactions on Programming Languages and Systems, Vol 13, No 2, April 1991.

192 . M. N. Wegman and F. K. Zadeck

1-1

lf 1=1 Fig. 9. A conditional constant definition.

then j + 1

else j t 2

Many optimizing compilers repeatedly execute constant propagation and

unreachable code elimination since each provides information that improves

the other. CC solves this problem in an elegant way by combining the two

optimization. Additionally, the algorithm gets better results than are possi-

ble by repeated applications of the separate algorithms, as described in

Section 5.1.

3.4 Sparse Conditional Constant

We wish to derive a version of CC that also improves running time, just as

SSC was derived from SC to improve running time. In order to do this, we

must utilize some of the special properties of the SSA graph. We call this

algorithm Sparse Conditional Constant or SCC.

When the SSA graph was constructed, +-functions were inserted at some

join nodes. The meaning of a @function is that if control reaches the node in

the program flow graph along its ith in-edge, the result of the @-function is

the value of its ith operand.

In the SSC algorithm, when the meet rule was applied to a o-function, the

meet operator was applied to all of the operands of the @function. In the SCC

algorithm, the meet operator is applied only to those operands of the @-func-

tion that correspond to the program flow graph edges marked executable.

Those that are not executable effectively have the value of T.

This algorithm uses two worklists: Flow WorkList is a worklist of program

flow graph edges and SSA WorkList is a worklist of SSA edges.

SCC works as follows:

(1) Initialize the FlowWorkList to contain the edges exiting the start node of

the program. The SSAWorkList is initially empty.

Each program flow graph edge has an associated flag, the Executable-

Flag, that controls the evaluation of @functions in the destination node

of that edge. This flag is initially false for all edges.

Each LatticeCell is initially T.

(2) Halt execution when both worklists become empty. Execution may pro-
ceed by processing items from either worklist.

(3) If the item is a program flow graph edge from the FlowWorkList, then

examine the ExecutableFlag of that edge. If the ExecutableFlag is true

do nothing; otherwise:

(a) Mark the ExecutableFlag of the edge as true.

(b) Perform Visit+ for all of the @functions at the destination node.

(c) If only one of the ExecutableFlags associated with the incoming

program flow graph edges is true (i.e., if this is the first time this

ACM ‘Mansactlons on Programming Languages and Systems, Vol 13, No 2, Aprd 1991

(d)

Constant Propagation With Conditional Branches . 193

node has been evaluated), then perform VisitExpression for the ex-

pression in this node.

If the node only contains one outgoing flow graph edge, add that edge

to the FlowWorkList.

(4) If the item is an SSA edge from the SSAWorkList and the destination of

that edge is a o-function, perform Visit-o.

(5) If the item is an SSA edge from the SSAWorkList and the destination of

that edge is an expression, then examine ExecutableFlags for the pro-

gram flow edges reaching that node. If any of them are true, perform

VisitExpression. Otherwise do nothing.

The value of the LatticeCell associated with the output of a d-function is

defined to be the meet of all arguments whose corresponding in-edge has been

marked executable. It is computed by Visit+. Visit-d is called whenever the

value of the LatticeCell associated with one of its operands is lowered or

when the ExecutableFlag associated with one of the in-edges becomes true.

Visit+ is defined as follows: The LatticeCells for each operand of the

o-function are defined on the basis of the ExecutableFlag for the correspond-

ing program flow edge.

executable The LatticeCell has the same value as the LatticeCell at the

definition end of the SSA edge.

not – executable The LatticeCell has the value T.

VisitExpression is defined as follows: Evaluate the expression obtaining

the values of the operands from the LatticeCells where they are defined and

using the expression rules defined in Section 2.2. If this changes the value of

the LatticeCell of the output of the expression, do the following:

(1) If the expression is part of an assignment node, add to the SSAWorkList

all SSA edges starting at the definition for that node.

(2) If the expression controls a conditional branch, some outgoing flow graph

edges must be added to the FlowWorkList. If the LatticeCell has value

1 , all exit edges must be added to the FlowWorkList. If the value is %’,

only the flow graph edge executed as the result of the branch is added to

the FlowWorkList.5

3.4.1 Asymptotic Complexity. As in SSC, each SSA edge can only be

examined twice. Nodes in the program flow graph are visited once for each of

their in-edges. The asymptotic running complexity of this algorithm is the

number of edges in the flow graph plus the number of SSA edges and should

be linear in practice.

CC may be impractically slow and, consequently, was ignored for a long

time. Many workers in code optimization had tried to derive practical sparse

algorithms that achieved CC’s results. However, they started from the sparse

5The value cannot be T , since the earlier step in VisitExpression will have lowered the value.

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 2, April 1991.

194 ~ M. N. Wegman and F. K. Zadeck

representation then prevailing, def-use chains without SSA form. Def-use

chains without SSA form do not determine the best information, as described

in Section 5.2.

4. THEOREMS AND PROPOSITIONS

In this section we first show that SCC is conservative, that is, it does not

label as constant variables that are not constant. We then show that SCC is

at least as powerful as CC and finds all the constants that CC does. Wegbreit’s

Algorithm 3.2 and Honey’s and Rosen’s algorithm [231 are more powerful

than CC but may require exponential time.

Before we define “conservative” more formally, we need the concept of an

executable sequence.

Definition. An executable sequence is a sequence of tuples in which each

tuple consists of a node in the flow graph and a lattice element for each

variable. The first tuple contains the start node, and each subsequent tuple is

derived by evaluating the expression at the node and changing values as

appropriate. The next tuple is determined by deriving values of expressions

and branching appropriately.

Definition. An output assignment is conservative if the values of vari-

ables at each node are no higher in the lattice-theoretic sense than the values

when that node is reached on any executable sequence. G

THEOREM. The output assignment derived from SCC is conservative and

an execution sequence traverses only those edges SCC labels as executable.

PROOF. Suppose the contrary. Then there must be a shortest execution

sequence that either traverses an edge not labeled executable or has a value

lower than the output assignment to a variable at that node. If an edge not

labeled executable is on the path, it must be the first such edge or else there

is a shorter such path. The preceding node on the path must be a conditional

and the values of the variables used in the condition must be different in the

sequence from those in the output assignment, since otherwise the edge

would have been labeled executable. But then there is a shorter path.

Thus, there must be a value which is higher in the output assignment than

on the sequence. That value is used at the last node in the shortest sequence.

Therefore there must be a preceding assignment node to the variable, and at

the assignment node the values agree with the output of SCC. There must be
an SSA edge from that assignment node to the last node in the sequence,

since there are no intervening assignment nodes, Thus the value at the last

node must be correct. El

6This notion is very similar to Graham and Wegman’s safe assignment [21]. In [21], an

executable sequence can be any path, even one that takes branches contrary to provably

constant branches. Thus, a safe assignment is conservative, but a conservative assignment is not

necessarily safe.

ACM Transactions on Programming Languages and Systems, Vol. 13, No 2, April 1991

Constant Propagation With Conditional Branches . 195

Now that we have shown that no more constants are found than is correct,

we wish to show that we find as many constants as other algorithms. We

compare our algorithm to CC, which finds more constants than SC. CC is
identical to SC except that CC does not propagate values along branches from

conditions until it shows that the branch may be taken.

THEOREM. The output assignment derived by SCC’ gives each variable at

each node a value which in the lattice-theoretic sense is at least as large as

CC”s output assignment.

PRooF. Suppose the contrary. There must be a lower value at an exe-

cutable node, since if the two algorithms agree on which way branches can

go, they must agree on which nodes are executable.

Then SCC has a shortest execution in which it evaluates an expression

whose value is lower than CC’s value or a point at which a variable is

assigned a lower value. If the assignment is a normal assignment (does not

use a d-function), then one of the variables involved in the expression must

have a lower value; hence there is an earlier assignment. If the assignment is

from a ~-function, then either (1) one of its arguments is lower than it would

be in the preceding node in CC or (2) the argument is flagged as executable

but the entering edge is not executable in CC.

In case (l), there must be an earlier assignment to the variable. In case (2),

there must be an edge that we say is executable but CC does not. If so, we

must have evaluated the expression controlling the condition to a lower value

than CC. But that evaluation takes place earlier, and hence there is a shorter

path. •l

5. OBSERVATIONS ON THE CONSTANT PROPAGATION ALGORITHMS

Several problems can arise in implementations of constant propagation algo-

rithms that affect the quality of the solution (the number of constants found)

as well as the asymptotic complexity.

5.1 Finding the Maximal Fixed Point

SSC was not the first algorithm to use a sparse representation for propaga-

tion; it was, however, the first to use such a representation and to find all

simple constants. Many global constant propagation algorithms in common

use resemble SSC but do not achieve the same results. In these weaker

algorithms, propagation at a use is deferred until all edges that reach that

use have been visited. If they all have the same value, the join node is given

that value. These algorithms start with the assumption that all expressions

have 1 and attempt to raise the lattice value to %?when it can be proven

that all values reaching that location are constant. Each SSA edge is visited

only once. The weaker algorithms are pessimistic in their propagation: They
never propagate any value unless they are certain that the value will never

be invalidated.

ACM Transactions on Programming Languages and Systems, Vol 13, No. 2, April 1991.

196 . M. N. Wegman and F. K. Zadeck

~+1

uhlle(. ..)do

J +i
Fig. 10. A simple program loop. i+ f(...)

,., {no stores are done Into J here}

l-J

end

All of the algorithms presented in this paper, on the other hand, are

optimistic. They start with the possibly incorrect assumption that everything

may be constant and determine the values that may not be constant. If an

optimistic algorithm is stopped before it terminates naturally, the informa-

tion gathered may be wrong. Pessimistic algorithms may be stopped at any

time and still produce correct (though poor) results.

The major drawback of the pessimistic approach is that propagation cannot

proceed around cycles in the SSA graph. These cycles are typically the result

of simple loops in the program, SSC finds more constants than the weaker

algorithms, since SSC can propagate through loops. In Figure 10, the vari -

able i always has the value 1 at the bottom of the loop. The weaker

algorithms get stuck on the loop and fail to discover this constant.

In practice, the difference between the optimistic and pessimistic versions

of SC or SSC would be quite small. When conditional branches are consid-

ered, however, as in CC or SCC, the differences could be significant, particu-

larly when these algorithms are used for procedure integration or type

determination, as discussed in Section 6.2.

More precisely, these weaker algorithms find a fixed point that is not

maximal. A fixed point is defined by saying that:

(1) The lattice element at each node represents what is provably true at a

node.

(2) We have functions whose domain and range is the lattice and these

functions represent what changes in state take place when we go from

node to node.

(3) If f is a function associated with the transition from node u to node U,

then the lattice element at u is less than or equal to (in the lattice-theo-

retic sense) ~ applied to the lattice element at u.

The maximal fixed point is the fixed point with the largest lattice elements

at the nodes and has been used as a minimal acceptable criterion of the

quality of flow analysis (see Kam and Unman [25] and Graham and Wegman
[21]). Several pessimistic versions of SSC have been published and imple-

mented. These include an algorithm described by Kennedy in chapter 6 of

[141, an algorithm in chapter 4 of [301, and an algorithm by Kennedy in
chapter 1 of [28]. Two optimistic versions of SSC have been published, the

first by Reif and Lewis [32, 33] and the second by Ferrante and Ottenstein

[191.

Several versions of SC have also been published. The first, by Kildall [26],

also appears in [1]; a generalization of this was published by Kam and

ACM Transactions on Programming Langaages and Systems, Vol 13, No 2, April 1991

Constant Propagation With Conditional Branches . 197

(a) l-l

j+2
if j=2, Fig. 11. Constant not found with clef-use chains.

(b) then i ~ 3

(c) . ..-i

Unman [25]. Each of these is optimistic, although none has made the

observations made here to reduce the worst case complexity from cubic to

quadratic.

5.2 Def-Use Chains

Many constant propagation algorithms work on a graph of defuse chains.

This data structure is common in optimizing compilers and is described in

many textbooks on compilers, such as the one by Aho, Sethi, and Unman [1].

Def-use chains can cause two problems with the algorithms presented here.

A clef-use chain is a connection from a definition site for a variable to a use

site for that variable. A definition site for a variable is a statement that

assigns to the variable. A use site is normally an operand of an expression.

There is a def-use chain between a definition site and a use site if the use site

can be reached from a definition site along the program flow graph without

passing through another definition site for that variable.

If SCC is performed using def-use chains rather than the SSA graph, some

constants are missed, because def-use chains exist along paths that are not

executable. Consider the program shown in Figure 11. Statement (b) pro-

vides the only possible value for statement (c), because the path through (b)

is the only path to (c) (we know this because the condition must always be

true). A clef-use chain version of SCC does not find this because it applies the

clef-use chain that starts from (a) and the algorithm does not know that the

value is really killed by (b).

Another shortcoming of clef-use chains is related to the size of the graph. In

clef-use chains, many definitions can reach a use. The number of clef-use

chains for a single variable can be N2, and thus the worst case complexity of

an algorithm that uses def-use chains is N2 x V. In the SSA graph, however,

only one definition reaches each use, and only N +functions can be inserted

for each variable. This means that the worst case complexity of a constant

propagation algorithm that uses the SSA graph is only N x V.

Figure 12 shows a program in which the clef-use chain graph grows as N2.

Here each of several definition sites for each variable reaches each use site

for each variable. This does not occur in the SSA graph, since a d-function is

inserted at the join node.

5.3 Nodes versus Edges

In the algorithms presented here, the ExecutableFlag is associated with the

program flow graph edges rather than the nodes. Two nodes may be exe-
cutable and there may be an edge between them, but that edge may not be

traversable. In Figure 13, if p can be determined always to be false, then i

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 2, April 1991.

198 0 M. N. Wegman and F. K. Zadeck

select j

when x {I + 1)

when y {1 + 2}

when z {1 + 3}

end

select k

when x {a+ 1}

when y {b + 1}

when z {c * 1}

end

Original Program

Def-Use Chains for Previous Program

q’pp

m
(3(3(3

SSA Graph for Previous Program

Fig. 12 Worst.case behavior of defuse chains

will be 10 after execution of the loop. If the ExecutableFlag is associated with

the nodes rather than the edges in the graph, then i will have the value _L

at the end of the loop.
An alternative way of implementing this would be to add nodes to the

graph and then associate an ExecutableFlag with each node. An additional

node must be inserted between any node that has more than one immediate

ACM Transactions on Programmmg Languagee and Systeme, Vol. 13, No. 2, April 1991.

Constant Propagation With Conditional Branches . 199

1+1

while (true) do

lf p

then exit
~+i+l Fig. 13. Case missed ifinformation isassociated with nodes.

if i=lo

then exit

end

print I

successor and any successor node that has more than one immediate prede-

cessor. Such a transformation has the effect of changing if - then statements

to if - then - else statements and also adds nodes at the destinations of gotos

and loop–exits. Since this transformation also improves redundancy elimina-

tion algorithms [27, 13, 38], it may be the method of choice.

5.4 Expression Evaluation

An expression may be evaluated twice for each of its operands, since the

LatticeCell associated with each operand may be lowered twice. If the

expression is large, this can be expensive. Reif and Lewis [32] store expres-

sions as trees and evaluate the leaves and internal nodes of the tree only as

their values change, and we suggest doing the same. As most expressions in

most programs are small, however, this improvement may be of only theoreti -

cal interest.

6. PROCEDURE INTEGRATION AND INTERPROCE13URAL CONSTANT
PROPAGATION

Code optimization techniques are useful because it is desirable to program at

a high level of abstraction and use automatic techniques to specialize the

generic routines implementing the abstractions. Generic routines are usually

implemented by procedures. The techniques discussed here are also applica-

ble to generic methods in object-oriented programs.

Two techniques can be used to specialize generic procedures; the first is

based on procedure integration and the second on interprocedural analysis.

The distinctions between procedure integration and interprocedural analysis

are important because

(1) at any particular call site, the full power of a generic routine may be

unnecessary. Procedure integration provides separate copies of the proce -

dure, each of which maybe specialized differently for their respective call

sites. Interprocedm-al analysis allows specialization of the procedure only

in ways that are simultaneously appropriate to all sites.

(2) procedure integration breaks down the barrier between the call site and

the called procedure. More powerful specialization techniques are avail-

able after procedure integration than after interprocedural analysis. For
example, if the call site is inside a loop, a code motion algorithm may be
able to move some of the code in the generic routine to a point outside the

loop.

ACM Transactions on Programming Languages and Systems, Vol 13, No. 2, April 1991.

200 . M. N. Wegman and F. K. Zadeck

(setq i 1)

loop

(cond ((greaterp i 10) (go out)))

.

(setq I (plus I 1))

(go loop)

out

; plus lS a macro which expands m 1me to the

; x with the first argument to the macro and y

(cond

((and (integer x) (integer y))

(mtegeradd x y))

following. It replaces

with the second.

; The result of integeradd is en integer.

. . .

)

Fig. 14. Removal of conditional type check.

(3) procedure integration may require an unacceptably large amcmnt of
space. In the case of recursion, a naive procedure integration algorithm

may require an infinite amount of space.

To gain some intuition about kinds of code that might be integrated and

the kinds of problems that might be encountered, consider the code fragment

in Figure 14. Here the plus routine is a macro expanded by the compiller. We

view the type field of a variable as a variable inl its own right and perform

constant propagation on the type field. This is a form of type inference. At

compile time, the colmditional expression for the execution-time type check

can be eliminated. Our analysis proves that I is always an integer. Hc)wever,

to determine this, the branches of code producing floating point results must

be eliminated. This can only be done when analysis shows that only integer

values are passed in from the call site. Of course the analysis must optimisti-

cally assume that the: arguments are integers.

In Section 6.1 we describe how to represent the semantics of prc)cedure

calls using SSA form. In Section 6.2 we show how constant propagatl~on can

be profitably combined with procedure integration. In Section 6.3 we give an

algorithm to perform interprocedural constant propagation without encoun-

tering the space problems arising from procedure integration.

6.1 Procedure Calls in SSA Form

Procedure calls have two effects. One is to transfer control to a procedure and

the subsequent return; the other is to create instances of and to change the

names of variables. SSA form easily models the control flow aspects of a

procedure call, but changes may be required to model the passing of parame-

ters to procedures.

The value returned from a function call is used as a normal expression

value in the called procedure.
Each call-by-value parameter is modeled in SSA form by a single assign-

ment statement. The actual parameters are simply assigned to the formal

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 2, April 1991.

Constant Propagation With Condlitional Brancl?es . 201

a+-1 ~+1

if IsAliased(a, b)

then b+- a
b+2 b+2 Fig. 15. Effect of potential ahas (a, b) and

if IsAliased(a, b) insertion of resulting conditional assignments.

then a+ b
7+ ~ 9+ ~

parameters, which arenewvariables inthe called procedure. No variablesat

the call site can be affected.

Each call-by-value-return parameter is modeled in SSA form by two assign-

ment statements. The first assigns the actual parameter to the formal

parameter, and the second assigns the formal parameter back to the actual

parameter; because we are using SSA form, this second assignment is imple-

mented as an assignment to a new variable.

Each call-by-reference parameter is modeled as a call-by-value-return pa-

rameter, with one change: We must deal with problems caused by potential

aliasing. Aliasing occurs when it is possible to generate two or more names

for the same memory location. In many programming languages, aliasing

limits where and to what extent certain optimization can be performed.

Storing into memory by way of one name may affect the value referenced by

the other name. (The term “aliasing” can also mean the use of two expres-

sions that, because of pointers, can refer to the same location. This problem is

not addressed here.) The remainder of this section describes how to deal with

aliasing.

Several program constructs involving procedure calls may give rise to

potential aliases:

(1) A variable may be passed by reference in two or more parameter posi-

tions of a single call to a subroutine.

(2) A variable that is global to a procedure maybe used by its name ancl also

by a reference parameter in the call to the procedure.

(3) Any variable that is aliased to an argument to a procedure is also aliased

to the parameter.

Aliasing information can be represented as a list of pairs of variable names

for each procedure. If a pair (a, b) is a must-alias, then on all possible

executions of the program, a and b must refer to tlhe same storage location.

Must-aliasing of (a, b) implies that any assignment to either a or b is an

assignment to both a and b. If a pair (a, b) is a may-alias, then on some

execution of the program, a and b may refer to the same storage location.

Aliasing is not necessarily transitive: The existence of may-alias pairs (a, b)

and (b, c) does not imply the existence of (a, c). Ma y-aliasing of (a, b) means

that when a store to b occurs along a path from a store into A to a use of a,

the value of b may reaclh the use of a (see the left side of Figure 15). On some

executions, a may have the value I and on others it may have the value 2.
(The detection of potential aliases for a single procedure depends on the

semantics of the particular language, and is beyond the scope of this paper.

ACM Transactions on Programming Langnages and Systems, Vol. 13, No. 2, April 1991.

202 . M. N. Wegman and F. K. Zadeck

For example, in some languages two variables cannot be aliased if they are of

different types.)

Without some sort of interprocedural analysis, the number of potential

aliases in a program is quite large, even though the number of actual aliases

is small in practice. Banning [8] gives a simple procedure for computing a

conservative estimate of the potential aliases. A variable can be viewed as

aliased to itself. A formal parameter that is passed using call-by-reference

can be aliased to any variable to which the actual parameter is aliased. One

need only keep track of variables that are visible. Banning has created a

worklist algorithm that is linear in the number of aliased pairs. Since

aliasing is rare in real programs, this algorithm can be assumed to be

efficient. Other algorithms exist; see Barth [9], Rosen [37], Myers [29], Cooper

[15], and Burke [10].

Aliasing information maybe represented in SSA form by inserting if - then

structures after each assignment to a variable that is either may- or must-

aliased, as shown on the right side of Figure 15. The statement on the then

side is an assignment statement from the variable just defined to the variable

to which it is aliased. This has the effect of joining the two aliased variables

with a +-function. Once these additional if – then structures have been

inserted, the SSA graph can be built as before. In Figure 15, two SSA edges

would exist; each of these edges would go to a ~-function that merges the

potentially aliased variables.

The variable IsAliased (a, b) is evaluated as true if the pair is must-aliased.

The assignment blocks any values of the aliased variable from reaching

beyond the assignment of the first variable. The variable IsAliased (a, b) is

evaluated as ~ if the pair is may-aliased. Both values for the second

variable are merged in the @-function that is inserted after the if – then.

Such a definition is conservative; it is correct under all possible executions,

whether or not the alias actually occurs.

The advantage of representing aliasing by if - then structures is that, as

other types of analysis (such as constant propagation combined with proce-

dure integration) proceed, the value of the IsAliased variables can often be

determined to be true or false. Hence, if procedure Q with parameters a and

b is integrated in procedure P from a call Q(x,x), then IsAliased(a, b) is

true. If Q is integrated in procedure P from a call Q(x, y), then IsAliasecl(x, y)

is assigned to I sAliased (a, b). In Sections 6.2 and 6.3, we discuss two

techniques for refining the aliasing information as other analysis proceeds.

In the worst case, every variable in the original program may be aliased to
every other variable. Each assignment statement in such a program would be

followed by V if - then structures, swelling the program by a factor propor-

tional to the number of variables. If the number of aliases is large, it is

correct (although pessimistic) simply to assign ~ to any variables involved

in a large number of alias pairs and not insert the if – then structures.

(Pointers can also be modeled as assignments from ~ .)

6.2 Procedure Integration

The constant propagation techniques we have discussed seem to be well

suited to performing some of the specializations needed when procedures are

ACM ‘11-ansactlons on Programmmg Languages and Systems, Vol 13, No 2, Aprd 1991

Constant Propagation With Conditional Branches . 203

integrated. The specialized routines thus derived may be considerably smaller,

as well as more efficient, than their generic progenitors. Moreover, we show

how the techniques used in the SCC algorithm cause constant propagation to

take time linear in the size of the resulting specialized procedure rather than

the size of the generic one.

SCC has an advantage over SSC because the SCC algorithm can skip

sections of the program that are inaccessible at execution time. In the

compilers for languages such as Ada, C + +, and PL. 8 where procedure

integration is performed, or in compilers for variants of C or LISP where

macro expansion is performed, or when code is created by a program genera-

tor, this may provide a significant improvement in both compile-time and

execution-time performance.

Aliasing information can be improved by performing procedure integra-

tion. The aliasing information for a procedure is computed on the conserva-

tive assumption that the procedure can be called from any of its call sites.

Any procedure that has been integrated can, by definition, be called from

only one call site. The number of aliases passed through this one call site is

typically less than the number passed through a common instance of the

procedure. Once a procedure has been integrated, the parameter binding

through that call site can be determined and many of the potential aliases

can be ignored.

The benefit derived by combining constant propagation and procedure

integration varies depending on the style of programming, the size of the

program being compiled, the level of programming language being used, the

other optimizations performed by the compiler, and how well those optimiza-

tion are integrated. If the programming style is to perform many optimiza-

tion by hand (such as procedure integration and constant propagation),

many of the opportunities the compiler would have found may well have

already been taken. If, however, the program is large, or has been frequently

modified, then the programmer often loses track of opportunities for opti-

mization. Higher-level languages, for example, LISP, ML, and SETL, inhibit

the programmer from making too many low-level decisions. In languages

such as C, FORTRAN, or Pascal, however, the programmer is free, and often

required, to make many low-level decisions. This allows a programmer to

write programs in such a way that the optimizer finds few opportunities for

optimization other than those associated with arrays or register allocation. If

the input to the compiler is fairly high level, a compiler that implements an

aggressive set of well integrated optimizations is likely to find more opportu-

nities to improve the program than one that does not.

It is therefore difficult to say whether one optimization is good or bad, and

it is unlikely that any single study will provide a definitive result. Reports in

the area are mixed.

Allen et al. [4], looking at a large sample of programs, have found that over

24 percent of all parameters to subroutines in PL/I are lexically constants.

Presumably any global constant propagation algorithm would find additional

ones. Moreover, in languages that make heavy use of generics or where
runtime type information is needed, constant propagation has even more

potential to be helpful.

ACM Transactions on Programmmg Languages and Systems, Vol 13, No 2, April. 1991

204 . M. N. Wegman and F. K. Zadeck

Scheifler [39] studied procedure integration in CLU but did not consider

performing any subsequent optimizations. He reported that procedure inte-

gration alone improved the performance of the resulting program, but at a

considerable expense in the program size.

On the positive side, Ball [7] considered the effects of procedure integration

on optimization, doing a form of ad hoc data flow analysis to estimate the

effects of passing a constant parameter to a procedure. He reports positive

results on the size and execution time of the compiled code, even though his

constant propagation technique discovers only the simple constants. The ECS

compiler at IBM [4] by design relied heavily on the use of procedure integra-

tion and subsequent tailoring of the code. Appel and Tim [6] used procedure

integration (called beta-reduction in the LISP community) along with many

optimizations in their ML compiler, and they report positive results.

On the negative side, Richardson and Ganapathi [35] studied the effects of

optimization and procedure integration on five programs averaging 1200

lines each. They found that both procedure integration and optimization were

of benefit separately, but their combined benefit was in general no more than

the product of their separate benefits.

6.2.1 The Procedure Integration Algorithm. Procedure integration can be

combined with constant propagation to achieve a better result than either

separately. A prepass can create the SSA graph for each procedure. We can

integrate only those statements that are executable based on constant propa-

gation through the SSA graph of the procedure.

Time and space are saved by combining procedure integration with con-

stant propagation rather than the more naive approach of integrating and

then doing constant propagation. If one integrates first, one must expend

both time and space in copying parts of the code not relevant for that

execution, and then these irrelevant parts must be thrown away. In many

compilers that perform procedure integration, the data flow information is

not collected until after the integration.

The space explosion can be controlled by limiting the number of procedures

that are inlined. There are three general strategies for choosing what to

inline:

—Compiler directives. The programmer chooses some procedures that are

inlined by the compiler or a preprocessor.

–Static analysis. The compiler analyzes the program and chooses some set of

procedures to integrate. Common choices include integrating only leaf
procedures or procedure calls nested within loops.

—Performance measurement. The program is compiled and run using some

test data. Instrumentation is added to the program to count either the

number of times each procedure is called or the number of times each

procedure call is made.7

7The latter produces more precise information, since a single procedure maybe called from many

different locations and the frequency of each call may be different.

ACM TransactIons on Programming Languages and Systems, Vol. 13, No 2, April 1991

Constant Propagation With Conditional Branches . 205

The first two strategies are easy to implement but do not generally inline the

best set of procedures. The last produces better results but is cumbersome,

since good test data is required and the program must be compiled several

times.

Some modifications to SCC are necessary to perform procedure integration

as described above, since procedure integration requires copying the code

rather than simply marking it as executable. As the code is copied, edges

must be updated so that the branches in the copied code point into the copied

code rather than into the uninstantiated internal representation of the

subroutine.

The problem is how to determine whether a node has been instantiated

and, if so, where it resides. The solution is a global hash table that contains

one entry for each instantiated node. The key in the hash table is constructed

by concatenating two items: the name of the call site from which the

procedure is being instantiated and the name of the node in the uninstanti -

ated version (the place from which the code is being copied). The data in the

hash table is the location at which the node was instantiated. Each newly

instantiated node needs to record the name of the call site so that its

branches can in turn be looked up in the hash table.

When a control flow graph edge is taken from the FlowWorkList, its target

is looked up in the hash table. If a match is found, the algorithm looks at the

data field to find the instantiated block. If a match if not found, the block has

not yet been instantiated, and it must then be instantiated and added to the

hash table. The hash table replaces the ExecutableFlag found in the single-

procedure version of SCC.

SCC requires that all LatticeCells be initialized to T and that all Exe-

cutableFlags are initialized to false. A naive implementation would require

a pass over the entire procedure (even parts that would not be integrated) to

perform this initialization. Instead, each LatticeCell and ExecutableFlag can

be initialized as their defining nodes are copied. LatticeCells also reside in

the hash table indexed by their name and the name of the instantiating call

site.

6.3 Interprocedural Constant Propagation

The algorithm described in Section 6.2 can be viewed as a good, but some-

times unreasonably expensive, form of interprocedural constant propagation.

The expense is a result of making explicit all possible paths through the

program by expanding all of the procedures inline. If the program has

recursive procedures, then the inlining process can be unbounded; otherwise,

it may be exponential.

Where no procedure integration is performed, a variant of the procedure

integration algorithm can perform interprocedural constant propagation. The

statements in the procedure being integrated are not copied but are simply

marked as being executable. This marking indicates that the statement may
be executable along some path in the full program. Each call site to a given

procedure jumps to the location where the procedure starts. The aliasing

information at the entrance of the procedure is the meet of the aliasing

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 2, April 1991.

206 . M. N. Wegman and F. K. Zadeck

information at each of the call sites. In effect, the SSA graph for the entire

program looks like the interprocedural clef-use chains described by Allen in

[31.
This algorithm has the advantage that the amount of work required for

constant propagation over the entire program is linear in the sum of the sizes

of the SSA graph for each procedure; however, it has the disadvantage that

the number of constants found may be small, since the only constants

propagated across a procedure boundary are those having the same constant

value at all call sites. This algorithm finds a class of aliases closely related to

those found by Banning [8]. Our algorithm is more precise because it takes

advantage of knowledge discovered during constant propagation.

Myers [29] describes two frameworks for performing several forms of

interprocedural analysis. In his flow-sensitive framework, all paths through

all procedures are examined. It is not surprising that the problems he

investigated are intractable in this framework. In his flow-insensitive frame-

work, the data-flow information for each procedure is summarized and the

interprocedural information is created from this summary information and

the call graph of the program. While Myers did not consider constant

propagation, he did consider alias analysis. Our algorithm discovers many

facts that, in Myers’ terms, require flow-sensitive analysis, and yet the cost of

our algorithm is linear in the size of the full program. Our algorithm is more

precise because it takes advantage of knowledge discovered during constant

propagation.

Two algorithms for interprocedural constant propagation have been pub-

lished based on research done around the time of our conference paper [44].

The works by Callahan, Cooper, Kennedy, and Torczon [12], and Burke and

Cytron [11] are motivated by two concerns: The amount of space may still be

prohibitively large, since the entire program must be in memory at one time

for the analysis, and any change in one procedure may force re-analysis of the

entire programs The algorithms in [11] and [12] can both be broken down

into four steps. The details of each step differ between the two algorithms

and the interested reader should see each paper for further information.

(1) Compute the interprocedural aliasing information.

(2) Compute the intraprocedural constants

(3) Summarize each procedure to determine the effects of inter procedural

constants.

(4) Propagate the inter procedural constants along the paths in the call
graph.

The novel aspect of these algorithms is how they summarize the functions

and propagate the summarized results. While they address the time and

space problems of our algorithm, they miss many of the constants that our

‘Some people believe that even with large virtual memories, a worklist algorithm such as ours

with fairly random access patterns over a large space will perform poorly. No hard data is

available to resolve this.

ACM Transactions on Programmmg Languages and Systems, Vol 13, No 2, April 1991

Constant Propagation With Conditional Branches . 207

algorithm finds. In addition, these algorithms are primarily intended for use

in FORTRAN compilers, a program base in which data abstraction is rarely

used; many of the interprocedural constants found by our’ algorithm are

introduced by the use of data abstraction.

The weakness of the algorithms in [11, 12] is that there is no feedback

between the steps. Discovering that certain values are constant may allow

the discovery that some call is not executed. Discovering that some call is not

executed may improve the aliasing information (yield fewer aliases into the

called procedure) and may make more constants available into that routine,

since the parameters are joined along fewer paths.

7. AREAS FOR FUTURE RESEARCH

In Figure 14, a very simple form of type determination was performed. In

LISP, it is thought sufficient to propagate the type of any assignment node

forward: The information can be propagated in the same way as in the

constant propagation problem. To get good information in SETL, the problem

is somewhat harder. The goal is to infer the type of the object from the way in

which it is used (this problem was originally defined by Tenenbaum [41]).

SETL has only one primitive data type to program with, the set. Since sets

are rather inefficient to implement, the SETL compiler attempts to pick a

more efficient representation of an object on the basis of the way the object is

used.

The problem is bidirectional, since the information about how a variable is

used must be propagated backward as well as forward. Tenenbaum’s algo-

rithm for doing this requires alternating forward and backward passes, with

each pass done in a method similar to that of Kildall [26]. It may be possible

to use a variation of the SSA graph to represent the propagation space. The

chains must be bidirectional, that is, they must contain an edge from the use

to the definition in addition to an edge from the definition to the use. There

are many other details to be worked out, but this appears to be a straightfor-

ward extension of the ideas presented here.

In the range propagation problem [22, 24], the goal is to propagate ranges of

values in an attempt to fix the upper and lower bounds of variables, so as to

remove subscript range checking from areas of programs that can be proven

safe. This problem differs from simple constant propagation in that the

lattice may have an infinite number of levels, rather than just three. There

are, however, subsets of this problem in which the number of lattice levels is

small. For instance, in the problem of determining the possible values of a

label variable in FORTRAN, the number of labels in a program is small and

fixed. This type of problem should be easily solved by modifications to the

algorithms presented here.

Arrays are difficult for almost any data flow analysis problem. The simple

solution that is used in almost all implementations of optimizing compilers is

to treat any assignment to an array as an assignment of 1 unless that array
is always indexed by constants. It may be possible to do something more

sophisticated.

ACM Transactions on Programming Languages and Systems, Vol 13, No 2, Aprd 1991.

208 0 M. N. Wegman and F. K. Zadeck

It is almost always desirable to integrate a function if all of the parameters

are constant and the function references no global or free variables. Where

only some parameters are constant, however, the decision is not so clear.

Some benefit can be gained by unrolling loops and recursion if the space and

time can be controlled by good heuristics. This problem has been investigated

by Wegbreit [42], Ershov [18], Wegman [43], Appel and Jim [6], and Richard-

son and Ganapathi [361.

In this paper we have managed to combine constant propagation with

unreachable code elimination and procedure integration. One of the open

questions in compiler optimization is the proper order in which to apply the

various optimizations. Some optimizations expose opportunities for other

optimization techniques. We have eliminated the need to be concerned about

the order of the optimizations we have combined and in the process have

created a more powerful algorithm. It would be interesting to see if other

techniques can be integrated in a similar manner.

8. CONCLUSIONS

The work presented here is based on three fundamental results concerning

constant propagation: Kildall’s definition of the problem involving the three-

layered lattice, Reif and Lewis’s algorithm involving a sparse representation

of propagation space, and Wegbreit’s algorithm, which used the result of

conditional operations to improve the class of constants found. We have

added two relevant results of our own. The first result is that a careful

ordering of propagation in concert with symbolic execution of the conditional

expressions can increase the number of constants found with no penalty in

time or space. The second is the use of static single assignment form for

constant propagation.

We have used these five results to craft an algorithm that is efficient in

both time and space, and yet finds a very broad class of constants. Moreover,

we have shown how to use this algorithm to perform procedure integration

and interprocedural analysis.

ACKNOWLEDGMENTS

We would like to thank our colleagues Fran Allen, Trina Avery, Jeff Barth,

Michael Burke, Larry Carter, Keith Cooper, Ron Cytron, Bill Harrison,

Julian Padget, John Reif, Randy Scarborough, G. A. Venkatesh, and Referee

B for all the help they have given us. We would particularly like to thank

Barry Rosen who read the paper several times, always with helpful and

important suggestions. This paper could not have been written without their

assistance.

REFERENCES

1. A~o, A. V., SETHI, R , AND ULLMAN, J. D. Compders: Prmctples, Techruques, and Tools.

Addison-Wesley, Reading, Mass., 1986.

2. ALLEN, F. E. A catalogue of optimizing transformations. In Design and Optimization of

Compilers. R. Rustin, Ed., Prentice Hall, Englewood Cliffs, N.J , 1972, pp. 1-30.

ACM Transactions on Programming Languages and Systems, Vol. 13, No 2, Aprd 1991,

Constant Propagation With Conditional Branches . 209

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

ALLEN, F.E. Interprocedural data flow analysis. Znf. Proc. 74(1974),398-402.

ALLEN, F. E., CARTER, J. L., FABRI, J., FERRANTE, J., HARRISON, W. H., LoEwNER, P. G., AND

TREVILLYAN, L. H. The experimental compiling system. IBM J. Res. Deu. 24, 6 (Nov.

1980), 695-715.

ALPERN, B., WEGMAN, M. N., AND ZADECK, F. K. Detecting equality of values in programs.

In Conference Recordings of the F#teenth ACM Symposium on Principles of Programming

Languages. (Jan. 1988), pp. 1-11.

APPEL, A. W., AND JIM, T. Continuation-passing, closure-passing style. In Conference

Recordings of the Sixteenth ACM Symposium on Principles of Programming Languages.

(Jan. 1989), pp. 293-302.

BALL, J. E. Predicting the effects of optimization on a procedure body. In Proceedings of the

SIGPLAN’79 Symposium on Compiler Construction. (Aug. 1979), pp. 214-220. Published as

SIGPLAN Not. 14, 8.

BANNING, J. B. An efficient way to find the side effects of procedure calls and the aliases of

variables. In Conference Recordings of the Sixth ACM Symposium on Principles of Program-

ming Languages. (Jan. 1979), pp. 29-41.

BARTH, J. M. An interprocedural data flow analysis algorithm. In Conference Recordings of

the Fourth ACM Symposium on Principles of Programming Languages. (Jan. 1977), pp.

119-131.

BURKE, M. An interval approach toward interprocedural analysis. Tech. Rep. RC 10640

47724, IBM, July 1984.

BURKE, M., AND CYTRON, R. Interprocedural dependence analysis and parallelization. In

Proceedings of the SIGPLAN’86 Symposium on Compiler Construction. (June 1986), pp.

162-175. Published as SIGPLAN Not. 21, 7.

CALLAHAN, D., COOPER, K. D., KENNEDY, K. W,, AND TORCZON, L. M. Interprocedural

constant propagation. In Proceedings of the SIGPLAN’86 Symposium on Compiler Construc-

tion. (June 1986), pp. 152-161. Published as SZGPLAN Not. 21, 7.

CHOW, F. C. A portable machine-independent global optimizer–Design and measure-

ments. Tech. Rep. 83-254 (Ph. D. thesis), Computer Systems Laboratory, Stanford Univ.,

Palo Alto, Calif., Dec. 1983.

COCKE, J. AND SCHWARTZ, T. Programming Languages and Thew Compilers: Prelimmary

Notes. Courant Institute of Mathematical Sciences, New York Univ., April 1970.

COOPER, K. D. Interprocedural data flow analysis in a programming environment. Ph.D.

thesis, Dept. of Mathematical Sciences, Rice Univ., 1983.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. Efficiently

computing static single assignment form and the control dependence graph. Tech. Rep. RC

14756, IBM, revised Mar. 1991.

ELLIS, J. R. Bulldog A compiler for VLIW architectures. Ph.D. thesis, Dept. of Computer

Science, Yale Univ., New Haven, Corm., Feb. 1985.

ERSHOV, A. P. On the essence of compilation. In IFIP Working Conference on Formal

Description of Programming Concepts. (Aug. 1977).

FERRANTE, J. AND OTTENSTEIN, K. J. A program form based on data dependency in

predicate regions. In Conference Recordings of the Tenth ACM Symposium on Principles of

Programming Languages. (Jan. 1983).

FURTNEY, M. AND PRATT, T. W. Kernel-control tailoring of sequential programs for parallel

execution. In Proceedings of the 1982 International Conference on Parallel Processing. (Aug.

1982), pp. 245-247.

GRAHAM, S. L. AND WEGMAN, M. N. A fast and usually linear algorithm for global flow

analysis. J. ACM 23, 1 (Jan. 1976), 172-202.

HARRISON, W. H. Compiler analysis of the value ranges for variables. IEEE Trans. Softw.

Eng. SE-3, 3 (May 1977), 243-250.

HOLLEY, L. H. AND ROSEN, B. K. Qualified data flow problems. IEEE Trans. Softw. Eng.

SE-7, 1 (Jan. 1981), 60-78.

24 JOHNSON, H Dataflow analysis for intractable systems software. In Proceedings of the

SIGPLAN’86 Symposium on Compiler Construction. (June 1986), pp. 109-117. Published as

SIGPLAN Not. 21, 7.

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 2, April 1991

210 . M. N. Wegman and F. K. Zadeck

25. KAM, J. B, AND ULLMAN, J. D. Monotone data flow analysis frameworks. Ackz Inf. 7

(1977), 305-317.

26. KILDALL, G. A. A unified approach to global program optimization. In Conference Record-

ings of the Fu_st ACM Symposzum on Prmcbples of Programmmg Languages, (Oct. 1973), pp.

194-206.

27. MOREL, E. AND RENVOISE, C. Global optimization by suppression of partial redundancies.

Commun. ACM 22, 2 (Feb. 1979), 96-103,

28. MUCHNICK, S. S. AND JONES, N. D, Eds. Program Flow Analysis. Prentice-Hall, Englewood

Cliffs, NJ., 1981.

29. MYERS, E. W, A precise interprocedural data flow algorithm. In Conference Recordings of

the Eighth ACM Symposium on Principles of Programmmg Languages. (Jan. 1981), pp.

219-230.

30. OTTENSTEIN, K. J, Data-flow graphs as an intermediate form. Ph.D. thesis, Dept. of

Computer Science, Purdue Univ., Aug. 1978.

31. PRATT, T. W. Program analysis and optimization through kernel-control decomposition.

Acts Znf. 9 (1978), 195-216,

32. REIF, J. H, AND LEWIS, H R Symbolic evaluation and the global value graph, In Confer-

ence Recordings of the Fourth ACM Symposwm on Prmc~ples of Programmmg Languages.

(Jan. 1977), pp. 104-118.

33. REIF, J. H. AND LEWIS, H. R. Efficient symbolic analysis of programs J. Comput. Syst.

Sci. 32, 3 (June 1986), 280-313.

34. REIF, J. H. AND TARJAN, R. E. Symbolic program analysis in almost linear time. SIAM J.

Comput. 11, 1 (Feb. 1982), 81-93.

35. RICHARDSON, S. AND GANAPATHI, M. Interprocedural analysis vs. procedure integration,

Znf. Process. Lett. 32, 3 (Aug. 1989), 137-142,

36. RICHARDSON, S. AND GANAPATHI, M. Code optimization across procedures. IEEE Comput.

22, 2 (Feb. 1989), 42-51.

37. ROSEN, B. K. Data flow analysis for procedural languages. J. ACM 26, 2 (April 1979),

322-344.

38. ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. Global value numbers and redundant

computations. In Conference Recordings of the F@eenth ACM SymposLum on PrmcLples of

Programming Languages. (Jan. 1988), pp. 12-27.

39. SCHEIFLER, R. W. An analysis of inline substitution for a structured programming lan-

guage. Commun. ACM 20, 9 (Sept. 1977), 647-654.

40. SHAPIRO, R. M. AND SAINT, H. ‘he representation of algorithms. Tech, Rep. CA-7002-1432,

Massachusetts Computer Associates, Feb. 1970.

41 TENENBAUM, A. M. Type determination for very high level languages. Ph.D. thesis, Courant

Institute of Mathematical Sciences, New York Univ., Oct. 1974.

42. WEGBREIT, B Property extraction in well-founded property sets IEEE !l’rans Softw Eng

SE-1, 3 (Sept 1975), 270-285.

43. WEGMAN, M. N. General and efficient methods for global code improvement. Ph.D. thesis,

Computer Science Dept., Univ. of California at Berkeley, Berkeley, 1981.

44. WEGMAN, M. N. AND ZADECK, F. K. Constant propagation with conditional branches. In

Con ference Recordings of the Twelfth ACM Symposium on Prmc~ples of Programmmg

Languages. (Jan. 1985), pp. 291-299.

Recei~ed February 1988, revised June 1989, accepted October 1990

ACM Transactions on Programming Languages and Systems, Vol 13, No 2, April 1991

