
Final Exam

CS6013
Maximum marks = 50, Time: 3hrs

23-Nov-2012

1. [10] Dominance Frontiers
Define dominance frontier and write an algorithm to compute the Domi-
nance Frontiers for all the nodes in the CFG.

Input: Set of Nodes N, Set of Edges E, root node r

Output: ∀v ∈ N, DF(v)

Assume that you are given the following maps:

• Succ and Pred functions, that return the successor and predecessors
respectively.

• DOM, SDOM, IDOM functions return the dominators, strict dominators,
and immediate dominators for a given node.

What is the complexity of the algorithm?
[Bonus 5] Can you implement a faster algorithm?

2. [15] Register allocation
a) Briefly describe the iterated register coalescing algorithm.
b) Intra-procedural register allocation suffers from many drawbacks: the
values present in different registers before a call are copied to argument
registers / swap area; the caller and callee save registers have to appropri-
ately saved. Extend the iterated register coalescing algorithm to design
an inter-procedural register allocation scheme that avoids these copy re-
lated issues. Assume that standard intra-procedural liveness information
is available. Assume that the globals are live throughout the program.
b=1;

c=2;

a = foo(b, c).

print a;

p = c;

q = 3;

x = foo (p, q);

print x;

int foo(int f, int g){

k = f op g

return k;

}

−→

r1 = 1;

r2 = 2;

call foo

print r3;

r1 = r2;

r2 = 3;

call foo

print r3

foo:

r3 = r1 op r2

return

1



3. [15] Copy propagation
Given an assignment x := y, the copy propagation optimization, replaces
each later use of x with y, as long as there is no redefinition of x or
y in between. Write an iterative algorithm to do intra-procedural copy
propagation. Apply your algorithm on the following code:

c = a + b

d = c

e = d * d

L1: f = a + c

g = e

a = g + d

if (a < c) {

h = g + 1

L2: b = g * a

if (h < f) goto L1

}

else {

f = d - g

if (f > a) goto L2

else

c = 2

}

4. [10] Dependence analysis
Answer the below mentioned queries for the given sample code:
for (i = 1; i <= n; ++i) do

for (j = n; j >= 1; −−j) do

for (k = 1; k <= n+1; ++k) do

Sl: A[i,j,k] = A[i,j-1,k-1] + A[i-1,j,k]

S2: B[i,j-1,k] = A[i,j-1,k-1] * 2.0

S3: A[i,j,k+1] = B[i,j,k] + 1.0

endfor

endfor

endfor

(a) Draw the iteration space for the loop nest.

(b) Draw the execution order relationships between the three labeled
statements.

(c) Write the dependence relations (flow, anti and output) between the
three labeled statements.

(d) Restate the dependence relations in terms of distance vectors, direc-
tion vectors and dependence vectors.

(e) For the different references to A and B, use the GCD test to check
if/when there exists any same iteration or different iteration depen-
dence.

2


