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An important function of any register allocator is to target registers so as to eliminate copy

instructions. Graph-coloring register allocation is an elegant approach to this problem. If the
source and destination of a move instruction do not interfere, then their nodes can be coalesced

in the interference graph. Chaitin’s coalescing heuristic could make a graph uncolorable (i.e.,
introduce spills); Briggs et al. demonstrated a conservative coalescing heuristic that preserves

colorability. But Briggs’s algorithm is too conservative and leaves too many move instructions in
our programs. We show how to interleave coloring reductions with Briggs’s coalescing heuristic,

leading to an algorithm that is safe but much more aggressive.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—code gen-
eration; optimization; G.2 [Discrete Mathematics]: Graph Theory—graph algorithms

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Copy propagation, graph coloring, register allocation, register
coalescing

1. INTRODUCTION

Graph coloring is a powerful approach to register allocation and can have a sig-
nificant impact on the execution of compiled code. A good register allocator does
copy propagation, eliminating many move instructions by “coloring” the source
temporary and target temporary of a move with the same register. Having copy
propagation in the register allocator often simplifies code generation. The genera-
tion of target machine code can make liberal use of temporaries, and function call
setup can naively move actuals into their formal parameter positions, leaving the
register allocator to minimize the moves involved.

Optimizing compilers can generate a large number of move instructions. In static
single-assignment (SSA) form [Cytron et al. 1991], each variable in the intermediate
form may be assigned into only once. To satisfy this invariant, each program
variable is split into several different temporaries that are live at different times. At
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a join point of program control flow, one temporary is copied to another as specified
by a “φ-function.” The SSA transformation allows efficient program optimization,
but for good performance these artificial moves must later be removed.

Even non-SSA-based compilers may generate a large number of move instructions.
At a procedure call, a caller copies actual parameters to formals; then upon entry to
the procedure, the callee moves formal parameters to fresh temporaries. The formal
parameters themselves need not be fixed by a calling convention; if a function is
local, and all its call sites are identifiable, the formals may be temporaries to be
colored (assigned to machine registers) by a register allocator [Kranz et al. 1986].
Again, copy propagation is essential.

Copy propagation tends to produce a graph with temporaries of higher degree
(that are live at the same time as a greater number of other temporaries). This can
lead to graphs that are uncolorable, so that many temporaries must be spilled to
memory. Briggs et al. [1994] show a conservative coalescing algorithm that can do
some copy propagation without causing any spilling. But we have found in practice
that their algorithm is too conservative, leaving far too many copy instructions in
the program.

Our new result can be stated concisely: interleaving Chaitin-style simplification
steps with Briggs-style conservative coalescing eliminates many more move instruc-
tions than Briggs’s algorithm, while still guaranteeing not to introduce spills. Con-
sider the interference graph of Figure 2. Briggs’s conservative coalescing heuristic,
as we will explain, cannot coalesce the move-related pair j and b, or the pair d and
c, because each pair is adjacent to too many high-degree nodes. Our new algorithm
first simplifies the graph, resulting in the graph of Figure 3(a). Now each move-
related pair can be safely coalesced, because simplification has lowered the degree
of their neighbors.

With our new algorithm, the compiler is free to generate temporaries and copies
freely, knowing that almost all copies will be coalesced back together. These copies
can be generated based on static single-assignment form, continuation-passing style
[Kranz et al. 1986], or other transformations.

2. GRAPH-COLORING REGISTER ALLOCATION

Chaitin et al. [Chaitin 1982; Chaitin et al. 1981] abstracted the register allocation
problem as a graph-coloring problem. Nodes in the graph represent live ranges
or temporaries used in the program. An edge connects any two temporaries that
are simultaneously live at some point in the program, that is, whose live ranges
interfere. The graph-coloring problem is to assign colors to the nodes such that two
nodes connected by an edge are not assigned the same color. The number of colors
available is equal to the number of registers available on the machine. K-coloring
a general graph is NP-complete [Garey and Johnson 1979], so a polynomial-time
approximation algorithm is used.

There are five principal phases in a Chaitin-style graph-coloring register allocator:

(1) Build: construct the interference graph. Dataflow analysis is used to compute
the set of registers that are simultaneously live at a program point, and an edge
is added to the graph for each pair of registers in the set. This is repeated for
all program points.
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Fig. 1. Flowchart of Chaitin graph-coloring algorithm.

(2) Coalesce: remove unnecessary move instructions. A move instruction can be
deleted from the program when the source and destination of the move instruc-
tion do not have an edge in the interference graph. In other words, the source
and destination can be coalesced into one node, which contains the combined
edges of the nodes being replaced. When all possible moves have been coa-
lesced, rebuilding the interference graph for the new program may yield further
opportunities for coalescing. The build-coalesce phases are repeated until no
moves can be coalesced.

(3) Simplify: color the graph using a simple heuristic [Kempe 1879]. Suppose the
graph G contains a node m with fewer than K neighbors, where K is the
number of registers on the machine. Let G′ be the graph G − {m} obtained
by removing m. If G′ can be colored, then so can G, for when adding m to
the colored graph G′ the neighbors of m have at most K − 1 colors among
them; so a free color can always be found for m. This leads naturally to a
stack-based algorithm for coloring: repeatedly remove (and push on a stack)
nodes of degree less than K. Each such simplification will decrease the degrees
of other nodes, leading to more opportunity for simplification.

(4) Spill: but suppose at some point during simplification the graph G has nodes
only of significant degree, that is, nodes of degree ≥ K. Then the simplify
heuristic fails, and a node is marked for spilling. That is, we choose some node
in the graph (standing for a temporary variable in the program) and decide to
represent it in memory, not registers, during program execution. An optimistic
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approximation to the effect of spilling is that the spilled node does not interfere
with any of the other nodes remaining in the graph. It can therefore be removed
and the simplify process continued. In fact, the spilled node must be fetched
from memory just before each use; it will have several tiny live ranges. These
will interfere with other temporaries in the graph. If, during a simplify pass,
one or more nodes are marked for spilling, the program must be rewritten
with explicit fetches and stores, and new live ranges must be computed using
dataflow analysis. Then the build and simplify passes are repeated. This process
iterates until simplify succeeds with no spills; in practice, one or two iterations
almost always suffice.

(5) Select: assigns colors to nodes in the graph. Starting with the empty graph,
the original graph is built up by repeatedly adding a node from the top of the
stack. When a node is added to the graph, there must be a color for it, as the
premise for it being removed in the simplify phase was that it could always be
assigned a color provided the remaining nodes in the graph could be successfully
colored.

Figure 1 shows the flowchart for the Chaitin graph-coloring register allocator
[Chaitin 1982; Chaitin et al. 1981].

An example program and its interfererence graph is shown in Figure 2. The
nodes are labeled with the temporaries they represent, and there is an edge between
two nodes if they are simultaneously live. For example, nodes d, k, and j are all
connected since they are live simultaneously at the end of the block. Assuming
that there are four registers available on the machine, then the simplify phase can
start with the nodes g, h, c, and f in its working set, since they have less than
four neighbors each. A color can always be found for them if the remaining graph
can be successfully colored. If the algorithm starts by removing h and g, and all
their edges, then node k becomes a candidate for removal and can be added to the
worklist. Figure 3(a) shows the state of the graph after nodes g, h, and k have
been removed. Continuing in this fashion, we find that one possible order in which
nodes can be removed is represented by the stack in Figure 3(b), where the stack
grows upward.

The nodes are now popped off the stack and the original graph reconstructed and
colored simultaneously. Starting with m, a color is chosen arbitrarily, since the graph
at this point consists of a singleton node. The next node to be put into the graph is
c. The only constraint is that it be given a color different from m, since there is an
edge from m to c. When the original graph has been fully reconstructed, we have a
complete assignment of colors; one possible assignment is shown in Figure 3(c).

3. COALESCING

It is easy to eliminate redundant move instructions with an interference graph. If
there is no edge in the interference graph between the source and destination of
a move instruction, then the move can be eliminated. The source and destination
nodes are coalesced into a new node whose edges are the union of those of the nodes
being replaced.

Chaitin [1982] coalesced any pair of nodes not connected by an interference edge.
This aggressive form of copy propagation is very successful at eliminating move

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996, Pages 300-324.



304 · Lal George and Andrew Appel

liveIn: k j

g := mem[j+12]

h := k - 1

f := g * h

e := mem[j+8]

m := mem[j+16]

b := mem[f]

c := e + 8

d := c

k := m + 4

j := b

goto d

liveOut: d k j
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Fig. 2. Interference graph. Dotted lines are not interference edges but indicate move instructions.
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Fig. 3. (a) the intermediate graph after removal of nodes h, g, and k; (b) the stack after all nodes
have been removed; and (c) a possible assignment of colors.
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instructions. Unfortunately, the node being introduced is usually more constrained
than those being removed, as it contains a union of edges. Thus, it is quite pos-
sible that a graph, colorable with K colors before coalescing, may no longer be
K-colorable after reckless coalescing.

If some nodes are “precolored”—assigned to specific machine registers before
register allocation (because they are used in calling conventions, for example)—they
cannot be spilled. Some coloring problems with precolored nodes have no solution:
if a temporary interferes with K precolored nodes (all of different colors), then the
temporary must be spilled. But there is no register into which it can be fetched
back for computation! We say such a graph is uncolorable, and we have found
that reckless coalescing often leads to uncolorable graphs. Most compilers have a
few precolored nodes, used in standard calling conventions, but significantly fewer
than K of them; our compiler can potentially precolor all registers for parameter
passing, and therefore we cannot use reckless coalescing.

Briggs et al. [1994] describe a conservative coalescing strategy that addresses
this problem. If the node being coalesced has fewer than K neighbors of significant
degree, then coalescing is guaranteed not to turn a K-colorable graph into a non-
K-colorable graph. A node of significant degree is one with K or more neighbors.
The proof of the guarantee is simple: after the simplify phase has removed all the
insignificant-degree nodes from the graph, the coalesced node will be adjacent only
to those neighbors that were of significant degree. Since these are less than K
in number, simplify can remove the coalesced node from the graph. Thus if the
original graph was colorable, the conservative coalescing strategy does not alter the
colorability of the graph.

The strategy is conservative because a graph might still have been colorable
when a coalesced node has more than K neighbors of significant degree—two of the
neighbors might get the same color.

Conservative coalescing is successful at removing many move instructions with-
out introducing spills (stores and fetches), but Briggs found that some moves still
remain. For these he used a biased coloring heuristic during the select phase: when
coloring a temporary X that is involved in a move instruction X ← Y or Y ← X
where Y is already colored, the color of Y is selected if possible. Or, if Y is not
yet colored, then a color is chosen that might later be eligible for the coloring of
Y . If X and Y can be given the same color (assigned to the same register), then
no move instruction will be necessary.

In Figure 2 nodes c, d, b, and j are the operands of move instructions. Using
the conservative coalescing strategy, these nodes cannot be coalesced. Coalescing
b and j would produce a node with four significant-degree neighbors, namely m, d,
e, and k. However, during the selection phase it is possible to bias the coloring so
that these nodes get the same color. Therefore when coloring j, the color of b is
given preference. If b has not been colored yet, then an attempt is made to avoid
coloring j with a color used by a neighbor of b, to enhance the possibility of later
coloring b the same as j.

The success of biased color selection is based on chance. In our example, b

happened to be colored first with the register r2, and f was also assigned the same
register, thus prohibiting the choice of r2 for node j. Therefore, the move between
b and j cannot be eliminated. If f had been assigned another register, then the
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Fig. 4. Briggs’s algorithm.
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Fig. 5. Iterated algorithm.

move could have been eliminated. This type of lookahead is expensive. For similar
reasons the move between c and d cannot be eliminated. In the example of Figure 2
none of the moves were eliminated using either conservative coalescing or biased
selection.

Figure 4 shows the flow of control in Briggs’s register allocator. The potential-spill
and actual-spill phases are related to “optimistic coloring,” discussed in Section 5.1.

Rematerialization. Briggs et al. observe that variables with constant values can
be spilled very cheaply: no store is necessary, and at each use the value may
be reloaded or recomputed. Therefore, such variables are good candidates for
spilling, and the spill selection algorithm should be informed by the results of a
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good constant-propagation algorithm. This technique is equally useful in the con-
text of our new algorithm; we have no novel spilling techniques, and all the known
heuristics should be applicable.

Briggs also used constant-propagation information in coalescing decisions. When
a and b are known to be constant, the move a← b will be recklessly coalesced even
if the resulting live range would spill; this may be acceptable because the spill is
cheap.

In fact, Briggs also recklessly coalesced a← b if neither a nor b is constant; this
is not really justifiable (it can lead to excess spilling), but it was necessary because
his conservative coalescing heuristic is too weak to handle huge numbers of moves.
Briggs also recklessly coalesced any copy instructions in the original program, leav-
ing only the “splits” induced by φ-functions where a and b had inequivalent tags
(constant properties) for conservative coalescing.

Our algorithm does not do any reckless coalescing, because we cannot afford to
with so many precolored nodes; our coalescing is oblivious of constant-propagation
information.

4. DIFFICULT COLORING PROBLEMS

Graph-coloring register allocation is now the conventional approach for optimiz-
ing compilers. With that in mind, we implemented an optimizer for our compiler
(Standard ML of New Jersey [Appel and MacQueen 1991]) that generates many
short-lived temporaries with enormous numbers of move instructions. Several op-
timization techniques contribute to register pressure. We do optimization and reg-
ister allocation over several procedures at once. Locally defined procedures whose
call sites are known can use specially selected parameter temporaries [Appel 1992;
Chow 1988; Kranz et al. 1986]. Free variables of nested functions can turn into
extra arguments passed in registers [Appel 1992; Kranz et al. 1986]. Type-based
representation analysis [Leroy 1992; Shao and Appel 1995] spreads an n-tuple into
n separate registers, especially when used as a procedure argument or return value.
Callee-save register allocation [Chow 1988] and callee-save closure analysis [Ap-
pel and Shao 1992; Shao and Appel 1994] spread the calling context into several
registers.

Our earlier phases have some choice about the number of simultaneously live
variables they create. For example, representation analysis can avoid expanding
large n-tuples; closure analysis can limit the number of procedure parameters rep-
resenting free variables; and callee-save register allocation can use a limited number
of registers. In all these cases, our optimization phases are guided by the number
of registers available on the target machine. Thus, although they never assign reg-
isters explicitly, they tend to produce register allocation problems that are as hard
as possible, but no harder: spilling is rarely needed, yet there are often K − 1 live
variables.

In implementing these optimization techniques, we assumed that the graph-
coloring register allocator would be able to eliminate “all” the move instructions
and assign registers without too much spilling. But instead we found that Chaitin’s
reckless coalescing produced too many spills, and Briggs’s conservative coalescing
left too many move instructions. It seems that our register allocation and copy
propagation problems are more difficult than those produced by the Fortran com-
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pilers measured by Briggs.
Our measurements of realistic programs show that conservative coalescing elimi-

nates only 24% of the move instructions; biased selection eliminates a further 39%
(of the original moves), leaving 37% of the moves in the program. Our new algo-
rithm eliminates all but 16% of the move instructions. This results in a speedup of
4.4% over programs compiled using one-round conservative coalescing and biased
selection.

Compilers that generate few temporaries, or that do copy propagation entirely
before register allocation, will not see such an improvement from our algorithm;
but these compilers are not able to take advantage of the tradeoff between copy
propagation and spilling. With our new algorithm, compilers can integrate copy
propagation with register allocation to use registers more effectively without un-
necessary moves or spills.

5. ITERATED REGISTER COALESCING

Interleaving Chaitin-style simplification steps with Briggs-style conservative coa-
lescing eliminates many more move instructions than Briggs’s algorithm, while still
guaranteeing not to introduce spills.

Our new approach calls the coalesce and simplify procedures in a loop, with
simplify called first. The building blocks of the algorithm are essentially the same,
but with a different flow of control shown in Figure 5. Our main contribution is
the dark backward arrow. There are five principal phases in our register allocator:

(1) Build: construct the interference graph, and categorize each node as being
either move related or not. A move-related node is one that is either the source
or destination of a move instruction.

(2) Simplify: one at a time, remove non-move-related nodes of low degree from the
graph.

(3) Coalesce: perform Briggs-style conservative coalescing on the reduced graph
obtained in the simplification phase. Since the degrees of many nodes have been
reduced by simplify, the conservative strategy is likely to find many more moves
to coalesce than it would have in the initial interference graph. After two nodes
have been coalesced (and the move instruction deleted), if the resulting node is
no longer move related it will be available for the next round of simplification.
Simplify and Coalesce are repeated until only significant-degree or move-related
nodes remain.

(4) Freeze: if neither simplify nor coalesce applies, we look for a move-related node
of low degree. We freeze the moves in which this node is involved: that is, we
give up hope of coalescing those moves. This causes the node (and perhaps
other nodes related to the frozen moves) to be considered not move related.
Now, simplify and coalesce are resumed.

(5) Select: same as before. Unlike Briggs, we do not use biased selection, although
it is conceivable that some of the frozen moves could be eliminated through
biased selection.

The Appendix shows the algorithm in pseudocode.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996, Pages 300-324.



Iterated Register Coalescing · 309

j

k

h

g

f

e

d&c

b m

c

Fig. 6. Interference graph after
coalescing d and c.

j&b

k

h

g

f

e

d&c

m

b

c

Fig. 7. Interference graph after
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Consider the initial interference graph shown in Figure 2. Nodes b, c, d, and
j are the only move-related nodes in the graph. The initial worklist used in the
simplify phase must contain only non-move-related nodes and consists of nodes g,
h, and f. Node c is not included, as it is move related. Once again, after removal
of g, h, and k we obtain the graph in Figure 3(a).

We could continue the simplification phase further; however, if we invoke a round
of coalescing at this point, we discover that c and d are indeed coalescable, as the
coalesced node has only two neighbors of significant degree — namely, m and b.
The resulting graph is shown in Figure 6, with the coalesced node labeled as d&c.

From Figure 6 we see that it is possible to coalesce b and j as well. Nodes b and
j are adjacent to two neighbors of significant degree—namely, m and e. The result
of coalescing b and j is shown in Figure 7.

After coalescing these two moves, there are no more move-related nodes, and
therefore no more coalescing possible. The simplify phase can be invoked one more
time to remove all the remaining nodes. A possible assignment of colors is shown
below:

e 1
m 2
f 3

j&b 4
d&c 1

k 2
h 2
g 1

stack coloring

This coloring is a valid assignment for the original graph in Figure 2.
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Theorem. Assume an interference graph G is colorable using the simplify heuris-
tic. Conservative coalescing on an intermediate graph that is produced after some
rounds of simplification of G produces a colorable graph.

Proof. Let a simplified graph G′ be one in which some or all low-degree, non-
move-related nodes of G and their edges have been removed. Nodes that have been
removed from a graph G cannot affect the colors of nodes that remain in G′. Indeed,
they are colored after all nodes in G′ have been colored. Therefore, conservative
coalescing applied to two nodes in G′ cannot affect the colorability of the original
graph G.

This technique is very successful: the first round of simplification removes such
a large percentage of nodes that the conservative coalescing phase can usually be
applied to all the move instructions in one pass.

Some moves are neither coalesced nor frozen. Instead, they are constrained.
Consider the graph X, Y, Z, where (X,Z) is the only interference edge, and there
are two moves X ← Y and Y ← Z. Either move is a candidate for coalescing. But
after X and Y are coalesced, the remaining move XY ← Z cannot be coalesced
because of the interference edge (XY, Z). We say this move is constrained, and we
remove it from further consideration: it no longer causes nodes to be treated as
move related.

5.1 Pessimistic or Optimistic Coloring

Briggs et al. [1994] introduced optimistic coloring, which reduces the number of
spills generated. In the simplify phase, when there are no low-degree nodes, instead
of marking a node for spilling they just remove it from the graph and push it on
the stack. This is a potential spill. Then the select phase may find that there is
no color for the node; this is an actual spill. But in some cases select may find a
color because the K (or more) neighbors will be colored with fewer than K distinct
colors.

Our algorithm is compatible with either pessimistic or optimistic coloring. With
Chaitin’s pessimistic coloring, we guarantee not to introduce new spills. With
optimistic coloring, we can only guarantee not to increase the number of potential
spills; the number of actual spills might change.

If spilling is necessary, build and simplify must be repeated on the whole program.
The simplest version of our algorithm discards any coalescings found if build must
be repeated. Then it is easy to prove that coalescing does not increase the number
of spills in any future round of build.

However, coalescing significantly reduces the number of temporaries and instruc-
tions in the graph, which would speed up the subsequent rounds of build and sim-
plify. It is safe to keep any coalescings done before the first spill node is removed
from the graph. In the case of optimistic coloring, this means the first potential
spill. Since many coalesces occur before the first spill, the graph used in subsequent
rounds will be much smaller; this makes the algorithm run significantly faster. (The
algorithm we show in the appendix is a simpler variant that discards all coalesces
in the event of a spill.)
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6. GRAPH-COLORING IMPLEMENTATION

The main data structure used to implement graph coloring is the adjacency list
representation of the interference graph. During the selection phase, the adjacency
list is used to derive the list of neighbors that have already been colored, and during
coalescing, two adjacency lists are unioned to form the coalesced node.

Chaitin and Briggs use a bit-matrix representation of the graph (that gives con-
stant time membership tests) in addition to the adjacency lists. Since the bit matrix
is symmetrical, they represent only one half of the matrix, so the number of bits
required is n(n + 1)/2. In practice, n can be large (for us it is often over 4000),
so the bit-matrix representation takes too much space. We take advantage of the
fact that the matrix is sparse and use a hash table of integer pairs. For a typical
average degree of 16 and for n = 4000, the sparse table takes 256KB (2 words per
entry), and the bit matrix would take 1MB.

Some of our temporaries are “precolored,” that is, they represent machine regis-
ters. The front end generates these when interfacing to standard calling conventions
across module boundaries, for example. Ordinary temporaries can be assigned the
same colors as precolored registers, as long as they do not interfere, and in fact this
is quite common. Thus, a standard calling-convention register can be reused inside
a procedure as a temporary.

The adjacency lists of machine registers are very large (see Figure 9); because
they are used in standard calling conventions they interfere with many temporaries.
Furthermore, since machine registers are precolored, their adjacency lists are not
necessary for the select phase. Therefore, to save space and time we do not ex-
plicitly represent the adjacency lists of the machine registers. The time savings is
significant: when X is coalesced to Y , and X interferes with a machine register,
then the long adjacency list for the machine register must be traversed to remove
X and add Y .

In the absence of adjacency lists for machine registers, a simple heuristic is used
to coalesce pseudoregisters with machine registers. A pseudoregister X can be
coalesced to a machine register R, if for every T that is a neighbor of X, the
coalescing does not increase the number of T ’s significant-degree neighbors from
< K to ≥K.

Any of the following conditions will suffice:

(1) T already interferes with R. Then the set of T ’s neighbors gains no nodes.

(2) T is a machine register. Since we already assume that all machine registers
mutually interfere, this implies condition (1).

(3) Degree(T) < K. Since T will lose the neighbor X and gain the neighbor R,
then degree(T ) will continue to be < K.

The third condition can be weakened to require T has fewer than K−1 neighbors of
significant degree. This test would coalesce more liberally while still ensuring that
the graph retains its colorability; but it would be more expensive to implement.

Associated with each move-related node is a count of the moves it is involved
in. This count is easy to maintain and is used to test if a node is no longer
move related. Associated with all nodes is a count of the number of neighbors
currently in the graph. This is used to determine whether a node is of significant
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Benchmark Lines Type Description

knuth-bendix 580 Symbolic The Knuth-Bendix completion algorithm

vboyer 924 Symbolic The Boyer-Moore theorem prover using vectors
mlyacc 7422 Symbolic A parser generator, processing the SML grammar

nucleic 2309 F.P. Nucleic acid 3D structure determination
simple 904 F.P. A spherical fluid-dynamics program

format 2456 F.P. SML/NJ formatting library
ray 891 F.P. Ray tracing

Fig. 8. Benchmark description.

Benchmark live ranges average degree instructions

machine pseudo machine pseudo moves nonmoves

knuth-bendix 15 5360 1296 13 4451 9396
vboyer 12 9222 4466 10 1883 20097

mlyacc:
yacc.sml 16 6382 1766 12 5258 12123

utils.sml 15 3494 1050 14 2901 6279
yacc.grm.sml 19 4421 1346 11 2203 9606

nucleic 15 9825 4791 46 1621 27554
simple 19 10958 2536 15 8249 21483

format 16 3445 652 13 2785 6140
ray 15 1330 331 16 1045 2584

Fig. 9. Benchmark characteristics

degree during coalescing and whether a node can be removed from the graph during
simplification.

To make the algorithm efficient, it is important to be able to quickly perform
each simplify step (removing a low-degree non-move-related node), each coalesce
step, and each freeze step. To do this, we maintain four work lists:

—Low-degree non-move-related nodes (simplifyWorklist);

—Coalesce candidates: move-related nodes that have not been proved uncoalesce-
able (worklistMoves);

—Low-degree move-related nodes (freezeWorklist).

—High-degree nodes (spillWorklist).

Maintenance of these worklists avoids quadratic time blowup in finding coalesce-
able nodes. Chaitin keeps unspillable nodes (such as the tiny live ranges resulting
from previous spills) in a separate list to decrease the cost of searching for a spill
candidate; perhaps the spillWorkList should even be a priority queue based on spill
cost divided by node degree.

When a node X changes from significant to low degree, the moves associated with
its neighbors must be added to the move worklist. Moves that were blocked with
too many significant neighbors (including X) might now be enabled for coalescing.
Moves are added to the move worklist in only a few places:
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—During simplify the degree of a node X might make the transition as a result of
removing another node. Moves associated with neighbors of X are added to the
worklistMoves.

—When coalescing U and V, there may be a node X that interferes with both U and
V. The degree of X is decremented, as it now interferes with the single coalesced
node. Moves associated with neighbors of X are added. If X is move related, then
moves associated with X itself are also added, as both U and V may have been
significant-degree nodes.

—When coalescing U to V, moves associated with U are added to the move worklist.
This will catch other moves from U to V.

7. BENCHMARKS

For our measurements we used seven Standard ML programs and SML/NJ compiler
version 108.3 running on a DEC Alpha. A short description of each benchmark is
given in Figure 8. Five of the benchmarks use floating-point arithmetic—namely,
nucleic, simple, format, and ray.

Some of the benchmarks consist of a single module, whereas others consist of
multiple modules spread over multiple files. For benchmarks with multiple mod-
ules, we selected a module with a large number of live ranges. For the mlyacc
benchmarks we selected the modules defined in the files yacc.sml, utils.sml, and
yacc.grm.sml.

Each program was compiled to use six callee-save registers. This is an optimiza-
tion level that generates high register pressure and very many move instructions.
Previous versions of SML/NJ used only three callee-save registers, because their
copy-propagation algorithms had not been able to handle six effectively.

Figure 9 shows the characteristics of each benchmark. Statistics of the interfer-
ence graph are separated into those associated with machine registers and those
with pseudoregisters. Live ranges shows the number of nodes in the interference
graph. For example, the knuth-bendix program mentions 15 machine registers and
5360 pseudoregisters. These numbers are inflated as the algorithm is applied to all
the functions in the module at one time; in practice the functions would be applied
to connected components of the call graph. The average degree column, indicating
the average length of adjacency lists, shows that the length of adjacencies asso-
ciated with machine registers is orders of magnitude larger than those associated
with pseudoregisters. The last two columns show the total number of move and
nonmove instructions.

8. RESULTS

Ideally, we would like to compare our algorithm directly against Chaitin’s or Briggs’s.
However, since our compiler uses many precolored nodes, and Chaitin’s and Brigg’s
algorithms both do reckless coalescing (Chaitin’s more than Briggs’s), both of these
algorithms would lead to uncolorable graphs.

What we have done instead is choose the safe parts of Brigg’s algorithm—
the early one-round conservative coalescing and the biased coloring—to compare
against our algorithm. We omit from Brigg’s algorithm the reckless coalescing of
same-tag splits.
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Benchmark Nodes Instructions

spilled store fetch

knuth-bendix 0 0 0
vboyer 0 0 0

yacc.sml 0 0 0
utils.sml 17 17 35

yacc.grm.sml 24 24 33
nucleic 701 701 737

simple 12 12 24
format 0 0 0

ray 6 6 10

Fig. 10. Spill statistics.
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Fig. 11. Comparison of moves coalesced by two algorithms. The black and striped, labeled frozen
and constrained, represent moves remaining in the program.

From both algorithms (ours and Brigg’s) we omit optimistic coloring and cheap
spilling of constant values (rematerialization); these would be useful in either algo-
rithm, but their absence should not affect the comparison.

We will call the two algorithms one-round coalescing and iterated coalescing.
Figure 10 shows the spilling statistics. The number of spills—not surprisingly—

is identical for both the iterated and Briggs’s scheme. Most benchmarks do not
spill at all. From among the programs that contain spill code, the number of store
instructions is almost equal to the number of fetch instructions, suggesting that the
nodes that have been spilled may have just one definition and use.

Figure 11 compares the one-round and iterated algorithms on the individual
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Benchmark coalesced constrained biased freeze % coalesced

knuth-bendix 1447 47 1675 1282 70%

vboyer 146 0 783 954 49
mlyacc:

yacc.sml 1717 56 1716 1769 65
utils.sml 576 96 1459 770 70

yacc.grm.sml 775 66 1208 154 90
nucleic 440 144 578 459 63

simple 1170 209 2860 4010 49
format 884 12 1002 887 68

ray 177 6 442 420 59

Fig. 12. Coalesce statistics for one-round coalescing algorithm

Benchmark coalesced constrained freeze % coalesced

knuth-bendix 3684 611 156 83%

vboyer 1875 8 0 99
mlyacc:

yacc.sml 4175 971 112 79
utils.sml 2539 362 0 88

yacc.grm.sml 2038 165 0 93
nucleic 1323 298 0 82

simple 6695 1482 72 81
format 2313 208 264 83

ray 967 78 0 93

Fig. 13. Coalescing statistics for iterated register allocator.

benchmarks.
Referring to the bar charts for the one-round coalescing algorithm: coalesced are

the moves removed using the conservative coalescing strategy; constrained are the
moves that become constrained by having an interference edge added to them as a
result of some other coalesce; biased are the moves coalesced using biased selection,
and frozen are the moves that could not be coalesced using biased selection. On an
average 24% of the nodes are removed in the coalesce phase, and all the rest are
at the mercy of biased selection. Considering all benchmarks together, 62% of all
moves are removed.

For the iterated scheme coalesced and constrained have the same meaning as
above, but frozen refers to the moves chosen by the Freeze heuristic. Biased selection
is not needed, so biased does not apply. More than 84% of all moves are removed
with the new algorithm. Figures 12 and 13 give more detailed numbers.

The average improvement in code size is 5% (Figure 14). Since moves are the very
fastest kind of instruction, we would expect that the improvement in speed would
not be nearly this large. But taking the average timing from a series of 40 runs,
we measured a surprising speedup average of 4.4% using the iterated scheme over
one-round coalescing. Probably many of the coalesced moves are inside frequently
executed loops.

Figure 15 shows the timings on the individual benchmarks. Each entry is the
average of the sum of user, system, and garbage collection time. We believe that
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Fig. 14. Code size.

Benchmark One round Iterated Improvement

knuth-bendix 42900 40652 5%

vboyer 84204 80420 4
yacc.sml 55792 52824 5

utils.sml 28580 26564 7

yacc.grm.sml 39304 39084 1
nucleic 112628 111408 1

simple 102808 92148 10
format 28156 26448 6

ray 12040 10648 11

Average 5%

Fig. 15. Execution speed.

Benchmark One round Iterated Improvement

knuth-bendix 7.11 6.99 2%

vboyer 2.35 2.30 2
mlyacc 3.30 3.18 3

nucleic 2.91 2.59 11
simple 27.72 27.51 1

format 8.87 8.73 2
ray 49.04 44.35 10

Average 4.4%

the significant speed improvement is partly due to the better I-cache performance
of smaller programs.

There is a significant speed improvement when using six callee-save registers over
three. The old register allocator in the SML/NJ compiler showed a degradation in
performance when the number of callee-save registers was increased beyond three
[Appel and Shao 1992]. Appel and Shao attributed this to poor register targeting
(copy propagation). The new compiler using iterated coalescing shows a distinct
improvement when going from three to six callee-save registers, confirming Appel
and Shao’s guess. Use of a better register allocator now allows us to take full
advantage of Shao’s improved closure analysis algorithm [Shao and Appel 1994].
Figure 16 shows the average execution time taken over 40 runs. All benchmarks
show some improvement with more callee-save registers.

It is difficult to compare the compilation speed of our algorithm with Briggs’s,
since we do not have his allocator as he implemented it. Each round of our al-
gorithm, like his, takes linear time. But his algorithm disables coalescing with
machine registers in the first round, requiring an extra round in many cases to
coalesce pseudoregisters with machine registers; our algorithm does not.

Fig. 16. Execution time,

varying the number of
callee-save registers.

3 6

Benchmark callee-save callee-save Improvement

knuth-bendix 7.06 sec 6.99 1 %
vboyer 2.40 2.30 4

mlyacc 3.50 3.18 9
simple 28.21 27.51 2

format 8.76 8.73 0
ray 47.20 44.34 6
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9. CONCLUSIONS

Alternating the simplify and coalesce phases of a graph-coloring register allocator
eliminates many more moves than the older approach of coalescing before simpli-
fication. It ought to be easy to incorporate this algorithm into any existing im-
plementation of graph-coloring-based register allocation, as it is easy to implement
and uses the same building blocks.

APPENDIX

A. ALGORITHM IN PSEUDOCODE

We give a complete implementation of the algorithm (Figure 5) in pseudocode. In
this implementation, all coalescings are abandoned when an actual spill is detected.

A.1 Data Structures

A.1.1 Node Worklists, Node Sets, and Node Stacks

—precolored: machine registers, preassigned a color. Chaitin handles each live
range that must be assigned to machine register r by making a new temporary
that interferes with all machine registers except r; we just use a single node
precolored with color r directly to implement all such live ranges.

—initial: temporary registers, not preassigned a color and not yet processed by
the algorithm.

—simplifyWorklist: list of low-degree non-move-related nodes.
—freezeWorklist: low-degree move-related nodes.
—spillWorklist: high-degree nodes.
—spilledNodes: nodes marked for spilling during this round; initially empty.
—coalescedNodes: registers that have been coalesced; when the move u:=v is

coalesced, one of u or v is added to this set, and the other is put back on some
worklist.

—coloredNodes: nodes successfully colored.
—selectStack: stack containing temporaries removed from the graph.

Invariant. These lists and sets are always mutually disjoint, and every node is
always in exactly one of the sets or lists. Since membership in these sets is often
tested, the representation of each node should contain an enumeration value telling
which set it is in.

Precondition. Initially (on entry to Main), and on exiting RewriteProgram, only
the sets precolored and initial are nonempty.

A.1.2 Move Sets.. There are five sets of move instructions:

—coalescedMoves: moves that have been coalesced.

—constrainedMoves: moves whose source and target interfere.

—frozenMoves: moves that will no longer be considered for coalescing.

—worklistMoves: moves enabled for possible coalescing.

—activeMoves: moves not yet ready for coalescing.

Move Invariant. Every move is in exactly one of these sets (after Build through
the end of Main).
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A.1.3 Others

—adjSet: the set of interference edges (u, v) in the graph. If (u, v) ∈ adjSet then
(v, u) ∈ adjSet. We represent adjSet as a hash table of integer pairs.

—adjList: adjacency list representation of the graph; for each nonprecolored tem-
porary u, adjList[u] is the set of nodes that interfere with u.

—degree: an array containing the current degree of each node. Precolored nodes
are initialized with a degree of ∞, or (N +K) where N is the size of the graph.

Degree Invariant. For any u ∈ simplifyWorklist∪ freezeWorklist ∪ spillWorklist
it will always be the case that

degree(u) = |adjList(u) ∩ (precolored ∪ simplifyWorklist

∪freezeWorklist ∪ spillWorklist)|

—moveList: a mapping from node to the list of moves it is associated with.

—alias: when a move (u, v) has been coalesced, and v put in coalescedNodes, then
alias(v) = u.

—color: the color chosen by the algorithm for a node. For precolored nodes this
is initialized to the given color.

simplifyWorklist Invariant.

(u ∈ simplifyWorklist) ⇒
degree(u) < K ∧ moveList[u] ∩ (activeMoves ∪ worklistMoves) = {}

freezeWorklist Invariant.

(u ∈ freezeWorklist) ⇒
degree(u) < K ∧ moveList[u] ∩ (activeMoves ∪ worklistMoves) 6= {}

spillWorklist Invariant.

(u ∈ spillWorklist) ⇒ degree(u) ≥ K

A.2 Program Code

procedure Main() Main
LivenessAnalysis()
Build()
MkWorklist()
repeat

if simplifyWorklist 6= {} then Simplify()
else if worklistMoves 6= {} then Coalesce()
else if freezeWorklist 6= {} then Freeze()
else if spillWorklist 6= {} then SelectSpill()

until simplifyWorklist = {} ∧ worklistMoves = {}
∧ freezeWorklist = {} ∧ spillWorklist = {}

AssignColors()
if spilledNodes 6= {} then

RewriteProgram(spilledNodes)
Main()
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The algorithm is invoked using the procedure Main, which loops (via tail recur-
sion) until no spills are generated.

If AssignColors produces spills, then RewriteProgram allocates memory loca-
tions for the spilled temporaries and inserts store and fetch instructions to access
them. These stores and fetches are to newly created temporaries (albeit with tiny
live ranges), so the Main loop must be performed on the altered graph.

procedure AddEdge(u, v) AddEdge
if ((u, v) 6∈ adjSet) ∧ (u <> v) then

adjSet := adjSet ∪ {(u, v), (v, u)}
if u 6∈ precolored then

adjList[u] := adjList[u] ∪ {v}
degree[u] := degree[u] + 1

if v 6∈ precolored then
adjList[v] := adjList[v] ∪ {u}
degree[v] := degree[v] + 1

procedure Build () Build
forall b ∈ blocks in program

let live = liveOut(b)
forall I ∈ instructions(b) in reverse order

if isMoveInstruction(I) then
live := live\use(I)
forall n ∈ def(I) ∪ use(I)

moveList[n] := moveList[n] ∪ {I}
worklistMoves := worklistMoves ∪ {I}

live := live ∪ def(I)
forall d ∈ def(I)

forall l ∈ live
AddEdge(l, d)

live := use(I) ∪ (live\def(I))

Procedure Build constructs the interference graph and bit matrix. We use the
sparse set representation described by Briggs and Torczon [1993] to implement the
variable live. Build only adds an interference edge between a node that is defined
at some point and the nodes that are currently live at that point. It is not necessary
to add interferences between nodes in the live set. These edges will be added when
processing other blocks in the program.

Move instructions are given special consideration. It is important not to create
artifical interferences between the source and destination of a move. Consider the
program:

t := s ; copy

...

x := ... s ... ; use of s

...

y := ... t ... ; use of t

After the copy instruction both s and t are live, and an interference edge would
be added between s and t, since t is being defined at a point where s is live. The
solution is to temporarily remove s from the live set and continue. The pseudocode
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described by Briggs and Torczon [1993] contains a bug, where t is removed from
the live set instead of s.

The Build procedure also initializes the worklistMoves to contain all the moves
in the program.

function Adjacent(n) Adjacent
adjList[n] \ (selectStack ∪ coalescedNodes)

function NodeMoves (n) NodeMoves
moveList[n] ∩ (activeMoves ∪worklistMoves)

function MoveRelated(n) MoveRelated
NodeMoves(n) 6= {}

procedure MkWorklist() MkWorklist
forall n ∈ initial

initial := initial \ {n}
if degree[n] ≥ K then

spillWorklist := spillWorklist ∪ {n}
else if MoveRelated(n) then

freezeWorklist := freezeWorklist ∪ {n}
else

simplifyWorklist := simplifyWorklist ∪ {n}

procedure Simplify() Simplify
let n ∈ simplifyWorklist
simplifyWorklist := simplifyWorklist \ {n}
push(n, selectStack)
forall m ∈ Adjacent(n)

DecrementDegree(m)

procedure DecrementDegree(m) DecrementDegree
let d = degree[m]
degree[m] := d-1
if d = K then

EnableMoves({m} ∪ Adjacent(m))
spillWorklist := spillWorklist \ {m}
if MoveRelated(m) then

freezeWorklist := freezeWorklist ∪ {m}
else

simplifyWorklist := simplifyWorklist ∪ {m}
Removing a node from the graph involves decrementing the degree of its current

neighbors. If the degree is already less than K − 1 then the node must be move
related and is not added to the simplifyWorklist. When the degree of a node
transitions from K to K − 1, moves associated with its neighbors may be enabled.

procedure EnableMoves(nodes) EnableMoves
forall n ∈ nodes

forall m ∈ NodeMoves(n)
if m ∈ activeMoves then

activeMoves := activeMoves \ {m}
worklistMoves := worklistMoves ∪ {m}
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procedure Coalesce() Coalesce
let m(=copy(x,y)) ∈ worklistMoves
x := GetAlias(x)
y := GetAlias(y)
if y ∈ precolored then

let (u, v) = (y, x)
else

let (u, v) = (x, y)
worklistMoves := worklistMoves \ {m}
if (u = v) then

coalescedMoves := coalescedMoves ∪ {m}
AddWorkList(u)

else if v ∈ precolored ∨ (u, v) ∈ adjSet then
constrainedMoves := constrainedMoves ∪ {m}
addWorkList(u)
addWorkList(v)

else if u ∈ precolored ∧ (∀t ∈ Adjacent(v),OK(t, u))
∨ u 6∈ precolored ∧ Conservative(Adjacent(u) ∪Adjacent(v)) then

coalescedMoves := coalescedMoves ∪ {m}
Combine(u,v)
AddWorkList(u)

else
activeMoves := activeMoves ∪ {m}

Only moves in the worklistMoves are considered in the coalesce phase. When a
move is coalesced, it may no longer be move related and can be added to the simplify
worklist by the procedure AddWorkList. OK implements the heuristic used for
coalescing a precolored register. Conservative implements the Briggs conservative
coalescing heuristic.

procedure AddWorkList(u) AddWorkList
if (u 6∈ precolored ∧ not(MoveRelated(u)) ∧ degree[u] < K) then

freezeWorklist := freezeWorklist \ {u}
simplifyWorklist := simplifyWorklist ∪ {u}

function OK(t,r) OK
degree[t] < K ∨ t ∈ precolored ∨ (t, r) ∈ adjSet

function Conservative(nodes) Conservative
let k = 0
forall n ∈ nodes

if degree[n] ≥ K then k := k + 1
return (k < K)

function GetAlias (n) GetAlias
if n ∈ coalescedNodes then

GetAlias(alias[n])
else n

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996, Pages 300-324.



322 · Lal George and Andrew Appel

procedure Combine(u,v) Combine
if v ∈ freezeWorklist then

freezeWorklist := freezeWorklist \ {v}
else

spillWorklist := spillWorklist \ {v}
coalescedNodes := coalescedNodes ∪ {v}
alias[v] := u
nodeMoves[u] := nodeMoves[u] ∪ nodeMoves[v]
forall t ∈ Adjacent(v)

AddEdge(t,u)
DecrementDegree(t)

if degree[u] ≥ K ∧ u ∈ freezeWorkList
freezeWorkList := freezeWorkList \ {u}
spillWorkList := spillWorkList ∪ {u}

procedure Freeze() Freeze
let u ∈ freezeWorklist
freezeWorklist := freezeWorklist \ {u}
simplifyWorklist := simplifyWorklist ∪ {u}
FreezeMoves(u)

Procedure Freeze pulls out a node from the freezeWorklist and freezes all
moves associated with this node. In principle, a heuristic could be used to select
the freeze node. In our experience, freezes are not common, and a selection heuristic
is unlikely to make a significant difference.

procedure FreezeMoves(u) FreezeMoves
forall m(= copy(u,v) or copy(v,u)) ∈ NodeMoves(u)

if m ∈ activeMoves then
activeMoves := activeMoves \ {m}

else
worklistMoves := worklistMoves \ {m}

frozenMoves := frozenMoves ∪ {m}
if NodeMoves(v) = {} ∧ degree[v] < K then

freezeWorklist := freezeWorklist \ {v}
simplifyWorklist := simplifyWorklist ∪ {v}

procedure SelectSpill() SelectSpill
let m ∈ spillWorklist selected using favorite heuristic

Note: avoid choosing nodes that are the tiny live ranges
resulting from the fetches of previously spilled registers

spillWorklist := spillWorklist \ {m}
simplifyWorklist := simplifyWorklist ∪ {m}
FreezeMoves(m)

procedure AssignColors() AssignColors
while SelectStack not empty

let n = pop(SelectStack)
okColors := {0, . . . , K-1}
forall w ∈ adjList[n]

if GetAlias(w) ∈ (coloredNodes ∪ precolored) then
okColors := okColors \ {color[GetAlias(w)]}
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if okColors = {} then
spilledNodes := spilledNodes ∪ {n}

else
coloredNodes := coloredNodes ∪ {n}
let c ∈ okColors
color[n] := c

forall n ∈ coalescedNodes
color[n] := color[GetAlias(n)]

procedure RewriteProgram() RewriteProgram
Allocate memory locations for each v ∈ spilledNodes,
Create a new temporary vi for each definition and each use,
In the program (instructions), insert a store after each
definition of a vi, a fetch before each use of a vi.
Put all the vi into a set newTemps.
spilledNodes := {}
initial := coloredNodes ∪ coalescedNodes ∪ newTemps
coloredNodes := {}
coalescedNodes := {}

We show a variant of the algorithm in which all coalesces are discarded if the pro-
gram must be rewritten to incorporate spill fetches and stores. But as Section 5.1
explains, we recommend keeping all the coalesces found before the first call to
SelectSpill and rewriting the program to eliminate the coalesced move instruc-
tions and temporaries.
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