
Final Exam, CS6848, IIT Madras

02-May-2013

1. [6] Flow analysis I How do method duplication and class duplication help
improve the precision of flow analysis. Give examples. Describe the drawbacks
using examples.

2. [6] Flow analysis II We will assume a simplified procedural Java subset:
there can be only one class; it must have a main method, which can call many
other methods. As part of compound statements we will only admit if-then-else
statements. Method overloading is not allowed. We extend this Java subset with
two parallel constructs: async and finish. The construct async {S1} creates an
asynchronous task (or thread) to execute S1; tasks may also be nested. finish

{S} works as a “join” point for all the tasks (even nested ones) created in S. Let

main() {

L1: finish { // waits for tasks created at L3, L5, L7.

L2: S1;

L3: async {

L4: S3;

L5: async

L6: foo();}

L7: async {

L8: S5;

L9: finish { // waits for task created at L10.

L10: async

L11: foo();

L12: S6;

L13: } // end-finish

L14: S7} // starts only after the finish at L9 has terminated

L15: S8

L16: } // end-finish

L17: S9 // starts only after the finish at Line L1 has terminated.

... }

L18: void foo(){

L19: S;

L20: }

us assume that the body of the ”main” function is implicitly surrounded by a
finish async. Thus every reachable statement in the program is part of a task
and every task is inside a finish.

1

We will assume that every statement is labelled. Let us call the label of the
outermost task surrounding the main body as L01, and that of outermost finish
as L00. In the above code, L1, L2, L3, L7, L15, L16 and L17 are part of the
activity labelled L01. Statements L4, L5 are part of the activity labelled L3. L6

is part of the activity L5. Similarly, L8, L9, L10, L12, L13, L14 are part of
the activity labelled L7 and L11 is part of the activity L10. On the other hand,
L18, L19 and L20 are part of two tasks L10 and L5.

Our goal is to a) identify the tasks for each statement, and b) finish state-
ments for each task. [Note: a function may be called from multiple places; thus
the statements/tasks inside that function may be part of multiple async/finish
statements.] The list of statements that may execute in a task gives an over ap-
proximation of the statements that may run in serial. The flow set F : Labels→
P (Labels) of each label is the set of async/finish labels that may “flow into”
it. Give a procedure to generate the flow constraints for any input program.
Solving these constraints will help realize our goal.

Hint: For each finish or async statement you can iterate over all the statements
of its body.

3. [6] Exceptions I Let us consider a simple expression language with, async,
finish, try and raise.

e ::= c|e1; e2|async e|finish e|raise|try e1 with e2

The semantics of async and finish are similar to that explained in Q2. The
behavior of a raise statement inside a serial expression is standard – the control
is transferred to the nearest exception handler. The statement try e1 with e2
evaluates e1 and transfers the control to e2 if an exception is raised by e1.
If an exception is raised inside an async and not caught, then the execution
of the async is terminated. The exception however does not interrupt other
asynchronous tasks running in parallel with this async, and is propagated to
the finish. The finish statement waits for all the asyncs to terminate. It has
an implicit exception handler whose job is to raise an exception if any of the
tasks has thrown an uncaught exception. The program may either terminate
with an exception or return a value.

Briefly write about the types, values, type system, and operational semantics.

4. [6+2] Exceptions II Our goal is to introduce versioning exceptions in Java. As
a first step, let us introduce versioning exceptions in a subset of Featherweight
Java (FJ). An FJ program consists of a sequence of class declarations, followed
by a closed expression. Provide the type rules and operational semantics; feel
free to skip constructs that are not essential in the context of exceptions.
Grammar of our FJ subset:

L::=class C {C f;K M} // Class declarations

M::=C m(C x) {return e;} // Method declarations

K::=C(C f){this.f=f} // Constructor

e::=x | e.f | e.m(e) | new C(e) | (C)e | try (x, e) | restore (p,q)

[Bonus]: (Attempt at the end.) Briefly describe a scheme to automatically infer
the locations to save/restore.

5. [6] Type system for program analysis Here is a new expression language
that can be used to encode synchronized accesses using locks.

e ::= e1; e2|lock Obji|unlock Obji|ε

2

• Obji represents a predefined object, which can be used as the lock handle.
Assume 1 ≤ i ≤ n, where n is a constant.

• lock Obji: tries to take a lock on Obji.

• unlock Obji: tries to release the lock on Obji.

• It is illegal to lock an already locked object.

• Similarly, it is illegal to unlock an object that is not locked.

Write a type system that guarantees that a well typed program don’t perform
any illegal accesses. You can assume that no locks are taken, to start with.
Examples accesses:

• lock Obj1; lock Obj2; unlock Obj2; unlock Obj1 – should type check.

• lock Obj1; lock Obj2; unlock Obj1; unlock Obj2 – should type check.

• lock Obj1; unlock Obj2 – should not type check.

• lock Obj1; lock Obj1 – should not type check.

6. [3] (Bonus) Choose ONE of the following papers that we discussed in the class,
and critically analyze how it is limited and how it can be extended/improved.

(a) Communicating Sequential Processes

(b) Eiffel an introduction (focus on annotations)

(c) Proof Carrying Code

(d) Type safe method inlining.

(e) Type preserving garbage collectors.

3

