
Accurate Interprocedural Null-Dereference Analysis for Java

Mangala Gowri Nanda and Saurabh Sinha
IBM India Research Lab

{mgowri,saurabhsinha}@in.ibm.com

Abstract
Null dereference is a commonly occurring defect in Java

programs, and many static-analysis tools identify such de-
fects. However, most of the existing tools perform a limited
interprocedural analysis. In this paper, we present an in-
terprocedural path-sensitive and context-sensitive analysis
for identifying null dereferences. Starting at a dereference
statement, our approach performs a backward demand-
driven analysis to identify precisely paths along which null
values may flow to the dereference. The demand-driven
analysis avoids an exhaustive program exploration, which
lets it scale to large programs. We present the results of
empirical studies conducted using large open-source and
commercial products. Our results show that: (1) our ap-
proach detects fewer false positives, and significantly more
interprocedural true positives, than other commonly used
tools; (2) the analysis scales to large subjects; and (3) the
identified defects are often deleted in subsequent releases,
which indicates that the reported defects are important.

1 Introduction
Null dereference is a commonly occurring bug in Java

programs, and many static-analysis techniques and tools
have been developed for detecting such bugs (e.g., [3, 4,
5, 6, 7, 9, 10, 16]). The occurrences of such bugs often in-
volve interactions among multiple procedures (e.g., as ob-
served in Reference [3]); failure to take into account such
interactions can limit the usefulness of a tool. Although,
many interprocedural null-dereference analyses have been
developed for C and C++ programs (e.g. [2, 3, 16]), fewer
such techniques have been developed and evaluated for Java
programs. In fact, some of the most widely used Java
static-analysis tools, such as FINDBUGS [8], JLINT,1 and
ESC/JAVA [7], perform limited interprocedural analysis.
In recent work, two approaches for interprocedural null-

dereference analysis for Java programs have been presented.
Loginov et al. [12] present a sound analysis, based on ab-
stract interpretation, that gradually expands the interproce-
dural scope of analysis to establish the safety of a deref-
erence. A sound analysis discovers all potential bugs and,

1http://artho.com/jlint

therefore, is appropriate as a verification technique (where
the goal is to show the absence of bugs); but it can often re-
port many spurious warnings (or, false positives). Tomb et
al. [15] present a symbolic-execution-based analysis, which
is more appropriate as a bug-detecting technique (where the
goal is to identify as many bugs as possible—and the em-
phasis is not on reporting all potential bugs, but on reducing
false positives.) Their approach is parametrized by the call
depth to be explored (which, in their empirical study, is lim-
ited to two).
Our approach. In this paper, we present a bug-detection
technique that is accurate, efficient, and addresses the limi-
tations of existing bug-detecting tools. Our approach is in-
terprocedural, context-sensitive, and path-sensitive. Start-
ing at a statement s that dereferences variable v, our ap-
proach performs a backward analysis, taking into account
branch correlations, to identify a path along which v may
be null at s. A backward analysis is inherently demand-
driven: it explores only those program paths and program
states that are relevant for analyzing a dereference, which
lets our approach scale.
A novel feature of our approach is the use of a simple, yet

remarkably effective, abstract domain to model the program
state. The simplicity of the domain causes the analysis to
be efficient; and, although we do not use a constraint solver
to handle integer arithmetic, the analysis has a surprisingly
low false-positive rate.
Another key feature of our approach is that it does not

limit the call depth to be explored, but follows call chains
as far as necessary. This not only lets the analysis eliminate
many false positives, but also detect more bugs than would
be detected by a limited interprocedural analysis performed
by tools, such as FINDBUGS, or the limited call-depth ex-
ploration described by Tomb et al. In fact, some of the bugs
identified by our approach involved the propagation of null
values through more than 15 methods. To perform efficient
analysis of called methods, we compute and saves summary
information at call sites; by reusing summary information,
we avoid reanalyzing a method in a context in which the
method has been analyzed previously.
Although we do not limit the call depth, we use other

analysis parameters to control the program exploration.

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 133

These parameters can be used to bound the paths and states
that are explored, and enable the approach to perform a cost-
accuracy trade-off.
At a call to a library method, or at the entry of a method

that has no callers, we use a notion similar to the idea of
consistency checking [5] to determine how to classify a
dereference that receives an unknown value. To elaborate,
checking a variable against null establishes a programmer’s
belief that the variable may be null. Consequently, an un-
conditional dereference of the variable is reported as a po-
tential null dereference. We extend this concept to identify
interprocedural null checks.
Our approach can be used in a demand mode, in which

the user specifies the starting statement for the analysis. Al-
ternatively, the approach can be used in a batch mode, in
which the backward analysis is performed starting at each
dereference statement in a program. In the batch mode,
the summary information computed at a call site during the
analysis of a dereference is reused during the analyses of
other dereferences; thus, the reuse is not limited to the anal-
ysis of one dereference. The demand-mode execution is
suitable for providing on-line support for bug detection or
debugging, whereas the batch-mode execution is appropri-
ate for off-line comprehensive analysis of code builds. For
the empirical studies reported in the paper, we performed
the analysis in the batch mode.

Empirical evaluation. We have implemented the ap-
proach in a tool XYLEM, and conducted empirical studies
using three large open-source projects and three commer-
cial products (listed in Table 1). In the studies, we evalu-
ated the accuracy and efficiency of XYLEM, the effects of
the analysis parameters, and the relevance of the detected
bugs (measured in terms of whether the bugs get deleted).
Our results illustrate that XYLEM is significantly more ac-
curate and effective than FINDBUGS and JLINT.2

• On average, XYLEM found 16 times more bugs than
FINDBUGS and 3 times as many bugs as JLINT.

• Although XYLEM identifies more potential bugs, it
generates very few false positives. For one of our sub-
jects, Ant, we manually examined the reported bugs,
and found that only four of the 86 reported bugs were
false positives. For FINDBUGS, one out of 11, and for
JLINT, 32 out of 42 bugs were false positives.

• For Ant, XYLEM caught each true positive, and invali-
dated each false positive, reported by either FINDBUGS
or JLINT.

• For Ant, 75% of the bugs detected by XYLEM were
interprocedural bugs. Only 9% and 17% of the bugs
detected by FINDBUGS and JLINT, respectively, were
interprocedural.

2For the studies reported in this paper, we used FINDBUGS 1.3.4 and
JLINT 3.1.

• On average, 24% of the bugs detected by XYLEM got
deleted in subsequent releases compared to 10% for
FINDBUGS. In absolute numbers, XYLEM and FIND-
BUGS detected 257 and 11 bugs, respectively, that got
deleted.

• For none of the subjects, the null-dereference analysis
required more than 11 minutes. To date, the largest ap-
plication analyzed by XYLEM has over 1,009,000 lines
of code.

XYLEM has been deployed internally, in pilot mode, with
several development teams in IBM. In initial feedback from
three teams, we have learned that approximately 31% of the
null dereferences examined by these teams were considered
“must-fix” by developers. Although preliminary, the data
indicate the usefulness of the analysis.

Contributions. The main benefit of our approach is that it
enables an accurate and efficient null-dereference analysis
of Java software: it detects potential bugs that other tools
miss; it eliminates false positives that other tools identify;
and it scales to large software systems.
The contributions of the paper include
• A context- and path-sensitive interprocedural anal-
ysis for identifying potential null dereferences that
is demand-driven and parametrized for cost-accuracy
trade-offs

• Empirical studies, using large open-source and com-
mercial products, that illustrate the effectiveness, effi-
ciency, and usefulness of our approach.

2 Preliminary analysis
Prior to null-dereference analysis, our approach per-

forms interprocedural data-flow analysis to compute, for
each method, escape-in and escape-out variables. An
escape-in variable of methodM is a direct or indirect field
of a formal parameter that is used, before possibly being
defined, in M . An escape-out variable of M is either the
return value of M , or a direct or indirect field of a formal
parameter or return variable that is defined inM .
The preliminary analysis also constructs the control-flow

graph for each method.3 The analysis adds nodes to the
CFG to represent placeholder assignments to escape-in/out
variables, formal parameters, and actual parameters. At
method entry, the approach creates a FormalIn node for
each formal parameter and each escape-in variable of the
method. At method exit, the approach creates a FormalOut
node for each escape-out variable and for the return value.
At each call node, the approach creates an ActualIn node
for each formal parameter and escape-in variable of the

3The control-flow graph (CFG) for a method M contains nodes that
represent statements in M and edges that represent potential flow of con-
trol among the statements.

134

Formalin x =

6

7

8

10

9

Formalout = t

Actualout t1.g =

Actualout t1 =

Formalin b =

Formalin c =

Actualin = c

2

3

4

Formalout = b.f

 [1] foo(B b, C c) {

 [4] b.f = r.m();

 [5] bar(C x) {

 [6] T t = null;

 [7] C y = x;

 [8] if (y == null)

[10] t.g = 10;

 [9] t = new T();

 [2] T t1 = bar(c);

 }

[11] return t;

 }

 [3] r = c;

{<t = null>}

{<t = null>,<x != null>}

{true,<x != null>}

{<t = null>,<y != null>}

Formalout = t.g

1: foo 5: bar

{<t = null>}

Figure 1. Example code fragment with CFGs.
callee; and an ActualOut node for each escape-out variable
and the return value of the callee.

Example 1. Consider the code fragment and CFGs
shown in Figure 1. In the CFG for foo(), we create
two FormalIn nodes for the two formal parameters,
and a FormalOut node for the escape-out variable b.f.
For the call to bar() at line 2, the approach creates
an ActualIn node to represent the actual parameter c,
and two ActualOut nodes: one to represent the assign-
ment of the return value to r, and another to represent
the escape-out variable t.g.

3 Null-Dereference Analysis
Our approach consists of a backward path-sensitive anal-

ysis. Starting at a dereference statement s that dereferences
variable v, the analysis propagates a set of abstract state
predicates backward in the CFG. Initially, the state contains
the predicate 〈v = null〉. Each CFG node potentially trans-
forms the state flowing in from its out-edges. For example,
the predicate 〈r = null〉 generated at line 2 flows into line 1
and gets transformed to 〈c = null〉.
[1] r = c; <c = null>
[2] r.foo(); <r = null>

We refer to the initial variable v as the root reference
(Rr) and the initial predicate 〈v = null〉 as the root pred-
icate (Rp). At an assignment statement v = w, the root
reference is updated to w and the root predicate becomes
〈w = null〉. The goal of the analysis is to find an assign-
ment of a null value to the root reference.
An any point during the analysis, the state predicates rep-

resent the conditions under which a null value for v can flow
to s. If, at a statement, the transformed state becomes in-
consistent (i.e., it contains a pair of conflicting predicates),
the path is infeasible and the analysis abandons traversal
along the path. Figure 2 presents the state predicates that
are tracked by the analysis.

3.1 Inconsistency checking

Although our analysis is interprocedural, it makes ap-
proximations at program points where the code is not avail-

pred ::= 〈refVar refOp null〉 | 〈refVar refOp refVar〉 |
〈refVar refOp strConst〉 | 〈boolVar refOp true〉 |
〈intVar intOp intVar〉 | 〈intVar intOp intConst〉

pred ::= ¬pred

refOp ::= =
intOp ::= < | ≤ | =

Figure 2. Predicates tracked by the analysis.

able for analysis. This occurs at a call to an external
method (e.g., a library method) or at the entry of a method
that has no caller in the application being analyzed. At
such points, the algorithm uses the notion of inconsistency
checking [4, 5] to determine whether a null value may flow
into the application. Inconsistency checking, introduced by
Engler and colleagues [5], is a technique that identifies code
fragments that represent contradictory programmer beliefs.

Example 2. In Figure 1, parameter c of foo() is as-
signed to r, which is dereferenced unconditionally at
line 4. This generates the belief that c is expected to
be non-null. However, the program also contains a null
check on c at line 8 in bar(), after c is passed as a pa-
rameter to bar() at line 2 and assigned to y at line 7.
This indicates a belief that c could be null. Together
these dereferences represent contradictory programmer
beliefs about c. For parameter b, the program contains
an unconditional dereference only; therefore, b is as-
sumed to be non-null.

The following null-check rule describes the consistency
checking performed by the algorithm. A reference r that (1)
receives its value from outside the analysis scope and (2) is
checked for a null value before a dereference along a path
is assumed to be potentially null. If r is not checked for a
null value or is dereferenced along all paths to a null check,
r is assumed to be non-null. In Example 2, the algorithm
would flag the dereference of r at line 4 as a potential null
dereference, whereas it would consider the dereference of b
at that line to be safe.
FINDBUGS uses such a rule, but it searches for null

checks within a method only. The novelty in our approach
is that the analysis tracks null checks across methods, as il-
lustrated in Example 2. Moreover, our approach applies the
null-check rule only at points where the callee or caller is
not available for analysis. If the program in Figure 1 were
to contain a caller of foo() that passed in only non-null val-
ues for parameter c, our algorithm would analyze the caller
and establish the safety of the dereference of r at line 4.

3.2 State transformation

Figure 3 presents the state transformations that occur at
some of the statements processed by our algorithm. (The
figure shows only a few illustrative examples.) The notation
Γ[x/y] represents the state with each syntactic occurrence
of variable x replaced with y. Consider the state transfor-
mation at statement x = r.f. The updated state contains the
predicates in the incoming state, with each predicate on x

replaced with a predicate on r.f, and predicate 〈r �= null〉.

135

Statement State transformation
x = y Γ′ = Γ[x/y]
x = r.f Γ′ = Γ[x/r.f] ∪ {〈r �= null〉}
r.f = x Γ′ = Γ[r.f/x] ∪ {〈r �= null〉}
if x op y Γ′ = Γ ∪ {〈x op y〉} (true branch)

Γ′ = Γ ∪ {〈¬(x op y)〉} (false branch)
x = y op z Γ′ = Γ \ Γ[x]
x = new Γ′ = Γ ∪ {〈x �= null〉}
x = r.m() (ext) Γ′ = Γ[x/null] ∪ {〈r �= null〉} (1)

if x = Rr ∧ null(x)

Γ′ = Γ ∪ {〈x �= null〉, 〈r �= null〉} (2)
if x = Rr ∧ ¬null(x)

Γ′ = Γ if x �= Rr (3)
x = r.m() (app) Γ′ = σ(r.m, Γ) ∪ {〈r �= null〉}

Figure 3. State transformations at some of the statements.
Γ represents the state following a statement; Γ′ represents
the state preceding a statement.

At the call to an application method, x = r.m(), the up-
dated state consists of 〈r �= null〉 and the transformation
induced on Γ by r.m(). (Function σ computes the transfor-
mation of the given state by the given method.)
At a call to an external method, x = r.m(), the null-

check rule is applied. There are three cases to consider. If
x is the root reference and a null check was performed on
x (indicated by null(x) in Figure 3), the state is updated to
replace the occurrences of x with null (i.e., the statement
is treated as the assignment of a null value); additionally,
〈r �= null〉 is added to Γ. If x is the root reference and no
null check was performed on x, the statement is processed
as the assignment of a new object (i.e., the transformation
assumes that r.m() does not return a null); also, 〈r �= null〉
is added to Γ. Finally, if x is not the root reference, the state
is propagated with no changes.

3.3 Parametrized path exploration

Figure 4 presents the interprocedural path-exploration al-
gorithm. It takes as inputs the statement, sd , to start the
traversal from and the variable, rd , that is dereferenced at
that statement. It returns as output the set of paths (and the
associated predicates) over which a null value for rd may
flow to sd .
The algorithm performs preprocessing (lines 1–5) to de-

termine, for each method M , whether a null check is per-
formed on a formal parameter of M or on a variable as-
signed the return value of a call to an external method; the
null check may occur after transitive assignments either in
M or in a method called directly or indirectly fromM . This
information is used to apply the null-check rule. Then, the
algorithm initializes the state with predicates 〈rd = null〉
and 〈this �= null〉 and calls analyzeMethod() (lines 6–7).
Function analyzeMethod() uses a standard worklist-

based approach to compute a fix-point solution over the
abstract state predicates (lines 1–18). Because we abstract
away integer arithmetic, the number of generated predicates
is bounded, and the analysis is guaranteed to terminate.

algorithm NullDerefAnalysis
input sd : dereference statement; rd: variable dereferenced at sd

output (path, state) pairs to dereference
declare Rr : root reference; Rp: root predicate; CS : call stack
null(r) true if a null check is performed on reference r
visited(s) set of states with which statement s is visited
S(M,Γ) summary information for methodM for state Γ;

consists of (path, state) pairs
begin
1. foreach methodM in reverse topological order do
2. foreach reference r that receives a value externally do
3. if there is a direct or indirect null check on r then
4. null(r) = true
5. else null(r) = false
6. Γ = {〈rd = null〉, 〈this �= null〉}; path ρ = sd

7. return analyzeMethod(sd, ρ,Γ)
end

function analyzeMethod
input s: statement to start analysis from; ρ: path to s; Γ: state at s
output T : (path, state) pairs from method entry to s
declare worklist : list of (s, ρ,Γ) triples; T, Tp: set of (ρ,Γ) pairs
addWlist(s, ρ,Γ) adds (s, ρ,Γ) to worklist ; updates visited(s),Rr

begin
1. worklist = (s, ρ,Γ); T = ∅
2. while worklist �= ∅ do
3. remove (s, ρ,Γ) from worklist

4. foreach predecessor sp of s do
5. if (sp �= call/entry) ∨ (sp calls an external method) then
6. compute Γ′ for the state transformation induced by sp

7. if (Γ′ is consistent) ∧ (Γ′ /∈ visited(sp)) then
8. addWlist(sp, ρ·sp,Γ′)
9. else if sp calls application methodM then
10. if S(M,Γ) = ∅ then // no summary exists
11. pushM onto CS // analyze called method
12. sx = exit node of the CFG ofM ; Γ′ = map Γ to sx

13. Tm = analyzeMethod(sx, sx,Γ′); pop CS

14. foreach (ρm,Γm) ∈ Tm do
15. add (ρm,Γm) to S(M,Γ)
16. foreach (ρm,Γm) ∈ S(M,Γ) do Γ′ = map Γm to sp

17. addWlist(sp, ρ·ρm ·sp,Γ′)
18. else add (ρ,Γ) to T // sp is entry
19. if CS �= ∅ then return T
20. Tp = ∅
21. if this method is an entry method then
22. foreach (ρ,Γ) ∈ T do
23. if null(Rr) ∨Rp = 〈true〉 then add (ρ,Γ) to Tp

24. else foreach call site sc that calls this method do
25. foreach (ρ,Γ) ∈ T do Γ′ = map Γ to sc

26. Tm = analyzeMethod(sc, ρ·sc,Γ′); add Tm to Tp

27. return Tp

end
Figure 4. The algorithm for null-dereference analysis.

Each element of the worklist is a triple (s, ρ,Γ), in which s
is a statement, ρ is a path to s, and Γ is the state at the entry
of s along path ρ. The function addWlist() adds an element
to worklist , and updates the root referenceRr and a visited
map (to ensure that a node is not processed multiple times
with the same state).
The function iteratively processes elements from the

worklist (lines 2–18). For each element (s, ρ,Γ) removed
from the worklist, the function examines each predecessor
sp of s. If sp is not a call/entry or sp is a call to an external
method, the function updates the state (using the transfor-

136

mations shown in Figure 3), checks whether the updated
state is consistent, and updates the worklist (lines 5–8).

Example 3. Consider the example in Figure 1.
For the dereference of t at line 10 of method
bar(), the algorithm creates predicates 〈t = null〉
and 〈this �= null〉 (we omit the latter in the fig-
ure). At statement 9, the algorithm encounters a con-
flicting predicate 〈t �= null〉. Along the backward
path (10, 8), the condition at statement 8 generates
predicate 〈y �= null〉. Next, statement 7 transforms
predicate 〈y �= null〉 to 〈x �= null〉. Finally, state-
ment 6 transforms incoming root predicate 〈t = null〉
to 〈null = null〉, which is represented as 〈true〉.

To perform efficient analysis of called methods, the al-
gorithm uses summary information for methods. The sum-
mary information for a method M maps a state Γ to a set
of (ρ,Γ′) pairs, which specifies how Γ is transformed along
each path ρ in M . Using the summary information, the al-
gorithm avoids analyzing a method multiple times for the
same state. On reaching a call to an application methodM ,
the algorithm first checks whether summary information ex-
ists for the current state (lines 9–10). If no summary exists,
the algorithm descends into M to analyze it (lines 11–13).
It uses a call stack to ensure context-sensitive processing of
called methods.4 After returning fromM , the analysis saves
the summary information for reuse in subsequent traversals
(lines 14–15). Next, the algorithm updates the current state
and path for the transformation induced by M , and adds
an updated element to worklist (lines 16–17). On reaching
the entry of the method, the algorithm collects (path, state)
pairs (line 18).
If the current method is not being analyzed in a specific

context (i.e., the call stack is empty) and the algorithm has
reached an entry method, the algorithm determines which
of the accumulated paths are true paths (lines 21–23). It
classifies a path as a true path if a null check was performed
on the root reference or the root predicate is 〈true〉. If an
entry method is not reached, the analysis continues at each
call site sc that calls the method (lines 24–26).

Example 4. Consider the example from Ant-1.5
shown in Figure 5, in which the dereference at line 535
is a potential null dereference. (This bug was reported
in the Ant Bugzilla repository.) At line 535, the al-
gorithm creates root predicate 〈javaFile = null〉.
At the FormalIn statement, the algorithm creates
a corresponding root predicate 〈javaFile = null〉
at the matching ActualIn at call statement 509.
javaFile is defined at the ActualOut for the call to
mapToJavaFile() at line 502. The algorithm adds the
called method to the call stack and initializes the state
at the FormalOut of mapToJavaFile() to root pred-
icate 〈R = null〉, where R is a placeholder variable to
represent the method return value. At line 566, the

4A context-sensitive analysis propagates states along interprocedural
paths that consist of valid call–return sequences only—the path contains
no pair of call and return that denotes control returning from a method to a
call site other than the one that invoked it.

 isCompileNeeded(..., javaFile);

invoke502
<true>

509

Interprocedural edge

Actualin := javaFile509
<javaFile = null>

Actualout javaFile =502
<true>

scanDir

<true>

Formalin javaFile =

535 javaFile.exists()

<javaFile = null>

Intraprocedural edge

<javaFile = null>

isCompileNeeded

invoke

Formalout = R

<R = null>

<true>

mapToJavaFile

565

R = null

<true>
566

scanDir(...) {
 [502] javaFile = mapToJavaFile(...

 [509] shouldCompile =

}

mapToJavaFile(...) {

 [565] if (!srcFile.getName().
 endsWith(".jsp"))
 [566] return null
}

isCompileNeeded(..., File javaFile) {
 [535] javaFile.exists
}

Figure 5. Example of interprocedural null dereference
from JspC.java in Ant 1.5: javaFile can be poten-
tially null at line 535.

return null statement assigns a null to R, which
transforms the root predicate to 〈true〉. Line 565 gen-
erates more predicates, which are irrelevant to our dis-
cussion. At the top of the method, because the call
stack is not empty, the algorithm ascends back to call
site 502 to continue the analysis. On reaching the entry
of scanDir(), because the root predicate is 〈true〉,
the algorithm classifies path (502, 565, 566, 509, 535)
as a true path.

Path exploration parameters. The algorithm performs a
controlled path exploration: it uses three parameters that
determine the extent to which different program paths and
states are explored. The first parameter bounds the traversal
time for a dereference. If the specified bound for traversal
time is exceeded for a dereference, the algorithm aborts and
ignores the dereference (i.e., it does not mark the derefer-
ence as either safe or unsafe). The second parameter bounds
the number of state predicates. If the state limit is reached
at a program point, the algorithm stops tracking additional
predicates for that statement, but continues to analyze the
program. The third parameter bounds the number of true
paths collected at the entry of each method. If the path limit
is reached at the entry of a method, the algorithm stops ex-
ploring new paths in the method, but continues to extend
the current set of paths in the callers. The second and third
parameters do not cause the analysis to abort—they only
limit the number of predicates tracked, and the number of
paths explored, by the algorithm. If the algorithm does not
find a true path among the explored paths for the tracked
predicates, it marks the dereference as safe.
These parameters enable a cost-accuracy trade-off:

larger bounds can result in a more thorough program ex-
ploration and, therefore, more accurate results, but incur a

137

higher cost. In Section 4.3, we present empirical data to
illustrate the effects of the analysis parameters.

Limitations of the analysis. Although our approach per-
forms a path-sensitive analysis to compute precise results,
it has a few limitations. The algorithm does not handle re-
flection, dynamic class loading, or concurrency. To handle
recursion, the implementation processes a recursive call as
if it were a call to an external method and, therefore, applies
the null-check rule on encountering such a call. Another
limitation of the current implementation is that it does not
perform interprocedural exception-flow analysis.

3.4 Abstract state predicates

One of the novel features of our approach is the use of
a simple and efficient abstract predicate domain (Figure 2)
that is remarkably effective in enabling the analysis to com-
pute very few false positives.
Integer predicates. Although our approach does not use
a constraint solver to handle arithmetic, it uses rules for es-
tablishing the validity of integer predicates. For example,
given an existing predicate 〈x < const1〉 and a new predi-
cate 〈x = const2〉, if const1 > const2, the predicate eval-
uator returns 〈x = const2〉; otherwise, it reports a con-
flict. The evaluator can determine for the following code
that x = null implies y = 0; therefore, in the loop header,
i < y is false and the loop body does not execute.
if (x == null) y = 0;
for (i = 0; i < y; i++) x.foo();

The limitations of not handling integer arithmetic can
affect the accuracy of the algorithm. For example, for
the following code, although XYLEM associates y = 1 with
x == null, it is unable to evaluate i < y-1. It conserva-
tively assumes that the predicate may be true or false and
incorrectly reports a potential null dereference for x.foo().
if (x == null) y = 1; else y = z+1;
for (i = 0; i < y-1; i++) x.foo();

Our approach performs additional processing to accom-
modate dual-variable predicates and instanceof predicates,
which improves the accuracy of the analysis.

Dual-variable predicates. At each statement, any new
predicate has to be validated against the existing predicates.
In general, it is easier to validate single-variable predicates
than dual-variable predicates. Therefore, wherever possi-
ble, our analysis converts a dual-variable predicate into one
or more single-variable predicates using the following rules:

• For a dual-variable predicate, 〈x1 = x2〉, for each ex-
isting predicate 〈x1 relOp const〉, the approach creates
a predicate 〈x2 relOp const〉 and vice versa.

• For a dual-variable predicate, 〈x1 �= x2〉, for each
existing predicate 〈x1 = null〉 (or, 〈x1 = true〉),
the approach creates a predicate 〈x2 �= null〉 (or,
〈x2 �=true〉) and vice versa.

Table 1. Subject programs used in the empirical studies.
Bytecode

Subject Classes Methods instructions
Ant 1.5 667 7095 168011
Lucene 1.9 272 2410 58653
Tomcat 4.1.20 216 4223 98361
App-A 204 3561 77867
App-B 2015 14886 340567
App-C 154 2504 46286

Although these rules have limited applicability, in our
experience, they are effective in removing false positives.
Consider the following example.

[1] b = x.foo(); {<x != null>,<y = null>,<x = null>}
[2] if (x == y) {<y = null>, <x = null>}
[3] y.bar(); {<y = null>}

For the dereference at line 3, our analysis creates an ini-
tial predicate 〈y = null〉. At line 2, instead of generating
the dual-variable predicate 〈x = y〉, the approach creates
〈x = null〉. Then, at line 1, the dereference of x gener-
ates predicate 〈x �= null〉, which conflicts with 〈x = null〉
and establishes that the dereference in line 3 is safe.

Instanceof predicates. Our algorithm does not track in-
stanceof predicates, but it leverages a useful property of
such predicates that they can indicate whether a reference
might be non-null: if (x instanceof T) is true, x is not
null. Therefore, along the true branch of such a conditional,
the algorithm generates 〈x �= null〉, which can potentially
remove false positives. In the following example, the deref-
erence of ta at line 3 is safe because two conflicting predi-
cates are generated at the conditional at line 1.

[1] if (el instanceof T){ {<el != null>,<el = null>}
[2] T ta = (T) el; {<el = null>}
[3] ta.get(); {<ta = null>}

4 Empirical Evaluation
To evaluate our approach, we implemented the null-

dereference analysis and conducted empirical studies using
three open-source projects and three commercial products
(referred to as App-A, App-B, and App-C). Table 1 lists the
subject programs, along with the number of classes, meth-
ods, and bytecode instructions in each subject. The null-
dereference analysis is implemented in our tool XYLEM,
using the WALA analysis infrastructure.5 The XYLEM anal-
ysis is performed in two steps. In the first step, points-to
analysis, escape analysis, and control-dependence analysis
is performed; the CFG, along with the minimal necessary
dependence information, is persisted on the disk. In the
second step, the persisted data is read in blocks and null-
dereference analysis is performed.
We conducted four empirical studies to evaluate: (1) ac-

curacy, (2) efficiency, (3) effects of analysis parameters, and

5http://wala.sourceforge.net

138

Figure 6. The number of bugs detected by FINDBUGS,
JLINT, XYLEM-intra, and XYLEM-inter. The lighter seg-
ment in the bar for XYLEM-intra represents the percentage
of bugs invalidated by interprocedural analysis.

(4) relevance of the detected bugs. Unless otherwise spec-
ified, we set the analysis parameters as follows: traversal
time limited to 2 seconds, the state size limited to 80 pred-
icates, and a maximum of 7 true paths per method. We se-
lected these values based onmultiple runs of the tool, during
development, on a training sample that included Ant and 12
other applications not included (to avoid bias) in our study.
For each of the studies, we ran XYLEM in the batch mode, in
which all dereferences in a subject were analyzed. We ran
our experiments on an Intel-based Linux machine (3 GHz,
dual core, 7GB RAM).

4.1 Accuracy

Goals and method. To assess the accuracy of our algo-
rithm, we computed the number of bugs reported by FIND-
BUGS, JLINT, XYLEM. We ran XYLEM in two modes: an
intraprocedural mode (XYLEM-intra) in which the tool does
not analyze called or calling methods; and an interproce-
dural mode (XYLEM-inter), in which the tool performs the
analysis described in section 3. We manually examined the
defects reported by FINDBUGS, JLINT, and XYLEM-inter
for Ant to identify false positives. We also determined the
number of interprocedural bugs identified by the three tools
and whether the XYLEM-inter true positives included all the
FINDBUGS and JLINT true positives.

Results and analysis. Figure 6 presents the data about ac-
curacy. It contains four bars for each subject: from left to
right, the bars represent FINDBUGS, JLINT, XYLEM-intra,
and XYLEM-inter. The last set of bars represent the av-
erage over the subjects.6 The vertical axis represents the
number of bugs. For example, for Ant, FINDBUGS and
JLINT reported 11 and 42 bugs, respectively (indicated by
the first and second bars); XYLEM-intra found 16 bugs,
and XYLEM-inter reported 86 bugs. The data show that

6JLINT could not analyze App B; therefore, the average for JLINT is
over five subjects only.

Table 2. Number of bugs and equivalence classes.
Ant Lucene Tomcat App-A App-B App-C

No. Bugs 86 68 65 42 140 91
No. Classes 32 22 24 21 97 25

consistently across the subjects FINDBUGS reports the least
number of bugs; JLINT detects more bugs than FINDBUGS;
and XYLEM-inter detects significantly more bugs than both
these tools. On average, XYLEM-inter detects 16 times as
many bugs as FINDBUGS and nearly three times as many
bugs as JLINT.
The lighter segment in the XYLEM-intra bar represents

the percentage of intraprocedural bugs that were invalidated
by interprocedural analysis. The following example from
class IContract in Ant illustrates such a bug.

[506] public void execute() throws BuildException {
[509] preconditions();
[514] boolean useCtrlFile=(ctrlFl != null);
[615] if (updIctrl) {
[626] ctrlFl.getAbsolutePath());

[655] private void preconditions()
[671] if (updIctrl == true && ctrlFl == null) {
[672] throw new BuildException("...

The intraprocedural analysis of execute() reports a po-
tential null dereference of ctrlFl at line 626 because of the
null check at line 514. However, the interprocedural analy-
sis determines that, if ctrlFl is null and updIctrl is true,
an exception is thrown at line 672, which causes line 626 to
not be reached. Therefore, if updIctrl is true at line 626,
ctrlFl must be non-null.
On average, less than 5% of the intraprocedural bugs

were invalidated by the additional constraints computed by
the interprocedural analysis.
Manual inspection of all the reported bugs for Ant

showed that XYLEM and FINDBUGS identified very few
false positives, whereas JLINT identified many false posi-
tives. FINDBUGS reported only one false positive in Ant.
This is not surprising as FINDBUGS is known to remove
false positives aggressively. However, the number of true
positives is very low too, which lowers the usefulness of
the tool. The false positive found by FINDBUGS shown be-
low, exemplifies the difference between our null heuristic
and that of FINDBUGS. XYLEM applies the heuristic only
for methods unavailable for analysis, whereas FINDBUGS
assumes that sections may be null at line 565 because of
the null check at line 553.

[542] final ArrayList sections = new ArrayList();
[553] if (null != section) { ... }
[565] sections.clear()

Of the 42 bugs reported by JLINT, 32 (more than 75%)
were false positives. XYLEM-inter reported four false posi-
tives (less than 5% of the 86 bugs).
Of the 11 bugs identified by FINDBUGS, one was an inter-

procedural bug, which was a true positive; JLINT reported

139

Figure 7. Execution time for null-dereference analysis
and preliminary analysis.

seven interprocedural bugs, of which five were false pos-
itives. XYLEM-inter reported 66 true-positive interproce-
dural bugs. Additionally, XYLEM-inter reported each true
positive (intra or interprocedural) reported by either FIND-
BUGS or JLINT, and invalidated each false positive reported
by FINDBUGS and JLINT.
Although, we did not observe this in Ant, XYLEM-inter

can report false positives that result from the limitation of
not using a constraint solver to handle arithmetic (as dis-
cussed in Section 3.4). Given the simplicity, and the result-
ing efficiency, of our predicate handling, it is encouraging
to find such a low false-positive rate.

Discussion. Overall, the data illustrate that our interpro-
cedural analysis detects significantly more bugs than an in-
traprocedural or a limited interprocedural analysis. In addi-
tion, our approach could eliminate many of the false posi-
tives that may be identified by FINDBUGS or JLINT.
We have found that, often, the null value generated at

a statement is dereferenced at several statements. In such
cases, it is useful to group the bugs into equivalence classes
based on the statement at which the null value originates.
This makes it easier for the developer to browse the bug
reports. In fact, in many cases, it may be sufficient to inves-
tigate one bug per class, which reduces the burden on the
developer. Table 2 shows the number of bugs and equiva-
lence classes for our subjects. The number of classes ranges
from 27% to 69% of the number of bugs.

4.2 Efficiency

Goals and method. To evaluate efficiency, we collected
data about the total analysis time, which consists of the time
required to perform the preliminary analysis and the time re-
quired to perform the null-dereference analysis. We inves-
tigated another aspect of efficiency that is indicated by how
a traversal terminates. A complete traversal is one in which
the algorithm either finds a true path or finds only false paths
after exploring all paths to the dereference. A partial traver-
sal is one in which the path or state limits prevent the algo-
rithm from performing complete path/state exploration, and
the algorithm finds only false paths in the explored parts of
the program. An aborted traversal is one in which the time

Table 3. Complete, partial, and aborted traversals.
Incomplete traversals

Number of Complete Partial Aborted
Subject Traversals traversals traversals traversals
Ant 48911 46461 (94.99) 1907 (3.90) 543 (1.11)
Lucene 15467 14807 (95.73) 366 (2.37) 294 (1.90)
Tomcat 27019 25663 (94.98) 689 (2.55) 667 (2.47)
App-A 19702 19176 (97.33) 316 (1.60) 210 (1.07)
App-B 85873 85024 (99.01) 619 (0.72) 230 (0.27)
App-C 10842 10521 (97.04) 285 (2.63) 36 (0.33)
Average 34636 33609 (97.03) 697 (2.01) 330 (0.95)

limit is reached. For each subject, we computed the number
of complete, partial, and aborted traversals.

Results and analysis. Figure 7 shows the execution times
(in minutes) for the preliminary analysis and the null-
dereference analysis. For each subject, the number at the
top represents the number of traversals that were performed
for the subject—one traversal starting at each dereference
statement in the subject. For example, for Ant, the 48911
traversals completed in less than 12 minutes, of which the
null-dereference analysis required approximately 10 min-
utes; the remaining time was taken by the preliminary anal-
ysis. The largest number of traversals (over 85000) were
performed for App-B, which took 8 minutes.
Table 3 presents the data about the traversals: it lists

the total number of traversals (column 2), and the number
and percentage of traversals that were complete, partial, or
aborted (columns 3–5). On average, the two-second time
limit caused less than 1% of the traversals to abort. Partial
traversals, caused by path and state limits, occurred more
frequently, but, overall, were about 2%. For three subjects,
more than 97% of the traversals were complete; for the re-
maining three, approximately 95% of the traversals com-
pleted.

Discussion. The data demonstrate the efficiency of the
analysis: our analysis required no more than 11 minutes for
any subject and, on average, performed complete traversals
for more than 97% of the dereferences.
To date, the largest application analyzed by XYLEM,

in deployment with a product team in IBM, contains over
1,009,000 lines of code. The analysis completed in approx-
imately 3 hours and 30 minutes. Such performance is ac-
ceptable because defect-finding tools do not have stringent
real-time constraints and are, typically, run overnight on a
new build.

4.3 Effects of analysis parameters

Goals and method. In the third study, we investigated
the effects of the three analysis parameters (traversal time,
number of predicates, and number of true paths) on accu-
racy and efficiency. There is a trade-off involved in increas-
ing the value of a parameter as it may cause the limits to be

140

00:00

03:00

06:00

09:00

12:00

15:00

18:00

21:00

24:00

27:00

30:00

33:00

 1 2 3 4 5 6 7 8 9

E
x
e

c
u

ti
o

n
 T

im
e

 (
h

h
:m

m
:s

s
)

Analysis configuration

Ant
Lucene
Tomcat

App A
App B
App C

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

b
u

g
s

Analysis configuration

Ant
Lucene
Tomcat

App A
App B
App C

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

in
c
o

m
p

le
te

 t
ra

v
e

rs
a

ls

Analysis configuration

Ant
Lucene
Tomcat

App A
App B
App C

Figure 8. Effects of nine analysis configurations on total execution time (left), number of bugs (middle), and incomplete traversals
(right). In the nine configurations: the traversal time increases in 0.5-second increments from 2 to 6 seconds; the state size increases
from 80 to 160 predicates in increments of 10; the number of paths increases from 7 to 15 in increments of 1.

reached for the other two parameters more often. For exam-
ple, increasing the time limit could decrease the number of
aborts, which is desirable. However, it could also cause the
path and predicate limits to be reached more often, thereby
increasing the number of partial traversals.
For this study, we created nine analysis configurations

by successively increasing the values of each parameter in
fixed increments. We increased (1) the traversal time in
0.5-second increments from 2 seconds to 6 seconds, (2) the
number of predicates from 80 to 160 predicates in incre-
ments of 10, and (3) the number of paths from 7 to 15 in
increments of 1. For each analysis configuration, we ran
XYLEM and collected data about the total execution time,
the number of bugs, and the number of incomplete traver-
sals (the sum of partial and aborted traversals).

Results and analysis. Figure 8 presents the data about
the effects of the nine configurations. The plot on the
left shows that the execution time increases for each suc-
cessive configuration, but not significantly. Even for the
last configuration—which corresponds to traversal time of
6 seconds, state size of 160 predicates, and 15 true paths—
the analysis required no more than 30 minutes to complete
for any of the subjects. The maximum increase from con-
figuration 1 to configuration 9 occurred for Tomcat, from
about 10 minutes to 30 minutes; App-A too showed a three-
fold increase in execution time. The remaining four subjects
showed a two-fold increase or less. (The plot shows a de-
crease in the execution time from configuration 7 to 8 for
Lucene and App-A, which can be attributed to variations in
the CPU load on our server.)
The middle plot shows the effects on the number of bugs.

Clearly, there is no significant gain in the number of bugs
detected. Beyond the first configuration (which is the de-
fault configuration), a total of only three additional bugs
were detected: one bug in Lucene at configuration 3; and
two bugs in Tomcat, one at configuration 2 and another at
configuration 5.
The plot on the right shows the effects on the number of

incomplete traversals. The general trend shows a very grad-

ual decrease in the number of incomplete traversals. The
maximum decrease occurs for Ant, from 2450 to 1869 in-
complete traversals. However, the additional 581 complete
traversals that resulted from this reduction detected no ad-
ditional bug. For the other subjects, the reduction in incom-
plete traversals ranged from 1.2% for App-C to 21.8% for
App-B. In a few cases, the number of incomplete traversals
increased from one configuration to the next (e.g., from con-
figuration 3 to 4 for App-B), which we suspect to be caused
by variations in the server load too. Because the analysis
executor measures traversal time in terms of the real time
(and not system time), a high CPU load can cause more
aborts even when the traversal time is increased. We leave
it to future work to perform more rigorous investigation of
the effects of analysis parameters.

Discussion. The data indicate that, although a larger-
scope analysis is feasible, there is no significant gain in the
number of bugs. To validate this further, we ran XYLEM on
App-C, with all limits turned off: the analysis completed in
48 minutes, with neither aborts nor partial traversals, but
no additional bug was detected. However, for the other
subjects, this did not prove to be successful—the analysis
ran into insufficient memory problems. This also indicates
the trend that the few remaining dereferences for which the
analysis is incomplete require expensive computation.
Future research can investigate how the memory prob-

lem might be overcome. For example, an approach might
be to not save and reuse summary information across traver-
sals. Although this could increase the execution time sig-
nificantly, the memory overhead would decrease; conse-
quently, more traversals might complete.

4.4 Relevance of the detected bugs

Goals and method. In the next study, we evaluated the
relevance of XYLEM-detected bugs by investigating how of-
ten these bugs get deleted in subsequent code versions. We
ran XYLEM on five releases each of the open-source subjects
and two builds each of the commercial products. Next, for
each pair of versions, we identified the bugs that appeared

141

Figure 9. Old, new, and deleted bugs between pairs of
versions.

in (1) both versions (old bugs), (2) the second version only
(new bugs), and (3) the first version only (deleted bugs). We
used the number of deleted bugs as an indicator of the rele-
vance of the identified bugs.

Results and analysis. Figure 9 presents data about the
differences in bugs for pairs of versions of our subjects.
There are four pairs of versions for each open-source
project, and one pair each for the commercial products.
Each pair is represented by a segmented bar, in which the
segments represent old bugs, new bugs, and deleted bugs.
The height of a bar represents the union of the bugs for the
corresponding version pair. For example, for pair 1.6.0–
1.6.5 of Ant, a total of 139 bugs are reported. Ant-1.6.0 has
130 reported bugs, of which 57 got deleted in Ant-1.6.5;
Ant 1.6.5 has 82 reported bugs, of which 73 bugs are re-
ported in the previous version too. On average over the
versions of Ant, 26% of the reported bugs got deleted; for
Lucene and Tomcat, 31% and 9% of the bugs got deleted,
respectively. The percentage of deleted bugs for the com-
mercial products varies from 23% (App-A) to 32% (App-C).
Over all subjects and versions, approximately 24% of the
bugs reported by XYLEM got deleted.
In contrast, for FINDBUGS, two reported bugs got deleted

across all versions of Ant, none in Tomcat, one each in
Lucene, App-A, and App-C, and six in App-B—a total of 11
deleted bugs (10%) compared to 257 deleted bugs detected
by XYLEM.

Discussion. The results indicate that a fairly large per-
centage of bugs got deleted, which suggests that the de-
tected bugs may be important. However, our study leaves
open questions about a postmortem analysis: a bug might
be deleted because of unrelated program changes that are
not intended to fix a bug. For example, a change in a class
hierarchy could delete a null-propagation path to a deref-
erence. Investigating the effects and types of unintentional
changes is an interesting topic for future research.

5 Related Work
In previous work, we investigated a sound null-

dereference analysis, in a tool called SALSA. The purpose
of SALSA is verification, i.e., to identify dereferences that
are definitely non-null; the remaining ones are suspect. The
metric of success is the reduction in the number of suspect
references by aggressive static analysis. XYLEM focuses on
bug detection instead of verification. The metric of success
is to offer “useful” defect reports, but without attempting to
be sound. These tools represent different trade-offs and can
be complementary.
At a technical level, the two tools implement differ-

ent approaches for interprocedural analysis. SALSA imple-
ments a forward iterative analysis, where the analysis scope
is expanded incrementally to be able to prove more deref-
erences safe. By contrast, XYLEM implements a backward
demand-driven strategy to find whether there is sufficient
basis to report a dereference as a possible bug. We be-
lieve that for bug detection, the backward demand-driven
approach is better in terms of scalability than a forward
iterative one. Furthermore, because of parametrized path
exploration, useful bug reports can be produced even in a
partial, time-bound analysis run, which is attractive from a
developer’s point of view.
Tomb et al. [15] present a symbolic-execution-based

analysis that is parametrized with respect to the call depth
to explore. In addition to null dereferences, their analysis
detects other types of bugs, such as invalid type casts. They
conclude that although interprocedural analysis is useful for
reducing false positives (by generating more constraints), it
does not detect noticeably more bugs than an intraprocedu-
ral analysis. For null dereferences, our results contradict
their conclusions, and suggest that a limited interprocedural
null-dereference analysis may be of little value.
Engler et al. [5] introduced the notion of detecting bugs

based on contradictory programmer beliefs, which are im-
plied in the code. Our null-check rule uses a similar idea,
but only for those dereferences that receive unknown values
from outside the application being analyzed. Dillig et al. [4]
formalized the notion of consistency checking by relating it
to type inference.
Several approaches for accurate interprocedural null-

dereference analysis have been developed for the C lan-
guage (e.g., [2, 3, 16]). Bush et al. [3] and Xie et al. [16]
present similar approaches for detecting a broad class of
memory errors. Their approaches feature a bottom-up anal-
ysis of procedures to compute summaries, and a forward
path-sensitive analysis within each procedure that prunes
out infeasible paths. In contrast, our approach is a demand-
driven backward analysis.
Other approaches for improving the accuracy of static

analysis use programmer annotations (e.g., [7, 10]), use
heuristics to avoid reporting certain types of warnings

142

(e.g., [10]), or build predictive models from historical data
(e.g., [11, 13]). These approaches are complementary to our
approach: they can be used to prioritize the bugs identified
by our approach.
Other researchers (e.g., [1, 14]) have investigated the

evolution of bugs over successive versions of applications.
For example, Ayewah et al. [1] manually examined the bugs
that were removed during the development of JDK 1.6.0.
They classified a bug as fixed if it was reported in a build,
not reported in the next build, and the class containing the
bug was present in the second build. They found that more
than half of the bug removalswere because of small targeted
changes that seemed to be focused on fixing the bug.

6 Summary and Future Work
We have presented an accurate analysis for detecting

null-dereference bugs in Java programs. Our analysis de-
tects bugs that many commonly used tools miss, and it elim-
inates the false positives that other tools report. For the sub-
jects that we studied, our approach detected significantly
more bugs than tools that perform limited interprocedural
analysis. Our studies also illustrated the efficiency of the
analysis and the relevance of the detected bugs. Our tool
has been deployed with several product-development teams
in IBM, and preliminary feedback has been positive about
the value of the tool in detecting bugs that are worth fixing.
Although our studies demonstrate the value of our ap-

proach, they leave open questions, which could be investi-
gated in future work. In our current studies, we have not
compared our approach with a sound analysis, such as the
one implemented in SALSA. Such a study would indicate
the extent to which our approach may miss potential bugs.
Future studies could also investigate how our results gener-
alize to more subjects, perform a rigorous evaluation of the
effects of analysis parameters, and explore implementation
optimizations that could reduce the incomplete traversals.
Another area of future work is prioritization of true posi-

tives, which is an important aspect of improving the useful-
ness of static-analysis tools. This may involve combining
static and dynamic analysis and building predictive models
based on historical data. Finally, future work could extend
our analysis to other types of bugs, notably resource-leak
bugs (e.g., failure to close database connections).

Acknowledgements
We would like to thank Satish Chandra and Mary Jean

Harrold for feedback on earlier drafts of the paper, and the
reviewers for their comments, that have improved the pre-
sentation significantly.

References

[1] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and
Y. Zhou. Evaluating static analysis defect warnings on pro-

duction software. In Proc. of 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Softw. Tools and Eng.,
pages 1–8, June 2007.

[2] D. Babić and A. J. Hu. Calysto: Scalable and precise ex-
tended static checking. In Proc. of the 30th Intl. Conf. on
Softw. Eng., pages 211–220, May 2008.

[3] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static ana-
lyzer for finding dynamic programming errors. Software—
Practice and Experience, 30(7):775–802, June 2000.

[4] I. Dillig, T. Dillig, and A. Aiken. Static error detection using
semantic inconsistency inference. In Proc. of the 2007 ACM
SIGPLAN Conf. on Prog. Lang. Design and Impl., pages
435–445, June 2007.

[5] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. In Proc. of the 18th ACM Symp. on
Operating Syst. Principles, pages 57–72, Oct. 2001.

[6] D. Evans. Static detection of dynamic memory errors. In
Proc. of the ACM SIGPLAN 1996 Conf. on Prog. Lang. De-
sign and Impl., pages 44–53, May 1996.

[7] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In
Proc. of the ACM SIGPLAN 2002 Conf. on Prog. Lang. De-
sign and Impl., pages 234–245, June 2002.

[8] D. Hovemeyer and W. Pugh. Finding bugs is easy. ACM
SIGPLAN Notices (Proceedings of Onward! at OOPSLA
2004), 39(10):92–106, Dec. 2004.

[9] D. Hovemeyer andW. Pugh. Finding more null pointer bugs,
but not too many. In Proc. of 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Softw. Tools and Eng.,
pages 9–14, June 2007.

[10] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tun-
ing a static analysis to find null pointer bugs. In Proc. of 6th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Softw. Tools and Eng., pages 13–19, Sept. 2005.

[11] T. Kremenek and D. Engler. Z-ranking: Using statistical
analysis to counter the impact of static analysis approxima-
tions. In Proc. of the 2003 Static Analysis Symp., pages 295–
315, June 2003.

[12] A. Loginov, E. Yahav, S. Chandra, N. Fink, S. Rinetzky, and
M. G. Nanda. Verifying dereference safety via expanding-
scope analysis. In Proc. of the 2008 Intl. Symp. on Softw.
Testing and Analysis, pages 213–223, July 2008.

[13] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and
G. Rothermel. Predicting accurate and actionable static anal-
ysis warnings: An experimental approach. In Proc. of the
30th Intl. Conf. on Softw. Eng., pages 341–350, May 2008.

[14] J. Spacco, D. Hovemeyer, and W. Pugh. Tracking defect
warnings across versions. In Proc. of Intl. Workshop on Min-
ing Softw. Repositories, pages 133–136, May 2006.

[15] A. Tomb, G. Brat, and W. Visser. Variably interprocedural
program analysis for runtime error detection. In Proc. of
the 2007 Intl. Symp. on Softw. Testing and Analysis, pages
97–107, July 2007.

[16] Y. Xie, A. Chou, and D. Engler. ARCHER: Using symbolic,
path-sensitive analysis to detect memory access errors. In
Proc. of the 9th European Softw. Eng. Conf. / 11th ACM SIG-
SOFT Intl. Symp. on Found. of Softw. Eng., pages 327–336,
Nov. 2003.

143

