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Abstract
Harnessing the hardware parallelism of the emerging multi-cores
systems necessitates concurrent software. Unfortunately, most of
the existing mainstream software is sequential in nature. Although
one could auto-parallelize a given program, the efficacy of this is
largely limited to floating-point codes. One of the ways to alle-
viate the above limitation is to parallelize programs, which can-
not be auto-parallelized, via explicit synchronization. In this re-
gard, efficient placement of the synchronization primitives – say,
post, wait – plays a key role in achieving high degree of thread-
level parallelism (TLP). In this paper, we propose novel compiler
techniques for the above. Specifically, given a control flow graph
(CFG), the proposed techniques place a post as early as possible
and place a wait as late as possible in the CFG, subject to depen-
dences. We demonstrate the efficacy of our techniques, on a real
machine, using real codes, specifically, from the industry-standard
SPEC CPU benchmarks, the Linux kernel and other widely used
open source codes. Our results show that the proposed techniques
yield significantly higher levels of TLP than the state-of-the-art.

Categories and Subject Descriptors D.1 [Software]: Concurrent
Programming—Parallel Programming
General Terms Algorithms, Performance
Keywords Multithreading, Parallelization, Compilers, Perfor-
mance

1. Introduction
Multi-core systems are becoming ubiquitous. Exploitation of the
hardware parallelism of such systems is critically dependent on
the availability of concurrent software. One way to parallelize pro-
grams which cannot be auto-parallelized is via explicit thread syn-
chronization, wherein dependences between the different concur-
rent threads are preserved with the help of synchronization prim-
itives such as post and wait. Several approaches have been pro-
posed for explicit synchronization [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].
However, the existing approaches do not address the problem of ef-
ficient placement of the post and wait primitives. Consequently,
synchronization primitives are typically placed at their “natural”
positions – wait before the first read of a shared variable and
post after the last write to the shared variable. This is exempli-
fied by the loop (extracted from the Linux kernel [12]) shown in
Figure 1, wherein spin lock is placed before the first read of the
field pmc->mca sfcount[MCAST EXCLUDE] of an element of the
list mc list and spin unlock is placed after the last write to the
field mca crcount of an element of mc list.1 However, place-

1 Note that spin lock and spin unlock are the counterparts of wait and
post respectively.
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1740                         if (pmc−>mca_sfmode == MCAST_EXCLUDE)
1741                                 type = MLD2_CHANGE_TO_EXCLUDE;

1743                                 type = MLD2_CHANGE_TO_INCLUDE;

1736                 skb = add_grec(skb, pmc, dtype, 0, 1); 
1737 
1738                 /* filter mode changes */
1739                 if (pmc−>mca_crcount) {

1742                         else

1744                         skb = add_grec(skb, pmc, type, 0, 0);
1745                         pmc−>mca_crcount−−;
1746                 }

1735                 skb = add_grec(skb, pmc, type, 0, 0);

1748         }
1747             spin_unlock_bh(&pmc−>mca_lock);

Insert wait here

Insert post here

1726         for (pmc=idev−>mc_list; pmc; pmc=pmc−>next) {

1728                 if (pmc−>mca_sfcount[MCAST_EXCLUDE]) {
1729                         type = MLD2_BLOCK_OLD_SOURCES;
1730                         dtype = MLD2_ALLOW_NEW_SOURCES;
1731                 } else {
1732                         type = MLD2_ALLOW_NEW_SOURCES;
1733                         dtype = MLD2_BLOCK_OLD_SOURCES;
1734                 }

net/ipv6/mcast.c:1726

1727             spin_lock_bh(&pmc−>mca_lock);

Figure 1. A loop from Linux kernel v2.6.23.1

ment of the synchronization primitives at their “natural” positions
may and often does limit the exploitation of TLP. For instance, let
us revisit the example shown in Figure 1, wherein each element of
the list mc list has its own lock. Although threads executing dif-
ferent iterations of the loop can potentially acquire their respective
locks at the same time, the iterations of the loop cannot be exe-
cuted in parallel. This can be ascribed to the recurrence based on
the variable skb. The calls to spin lock and spin unlock in the
original source code forbid concurrent access to the elements of
the list mc list by threads executing other code, thereby avoiding
data races; however, the calls do not preserve the aforementioned
recurrence which limits the execution of the iterations of the loop
to a serial fashion.

To this end, first we in-

skb = add_grec(skb, pmc, dtype, 0, 1); 
skb = add_grec(skb, pmc, type, 0, 0);

else {

      skb = add_grec(skb, pmc, type1, 0, 0);

}

skb = add_grec(skb, pmc, dtype, 0, 1); 
skb = add_grec(skb, pmc, type, 0, 0);

}

Insert wait here

Insert post here

if (pmc−>mca_crcount) {
        if (pmc−>mca_sfmode == MCAST_EXCLUDE)
               type1 = MLD2_CHANGE_TO_EXCLUDE;
       else
              type1 = MLD2_CHANGE_TO_INCLUDE;
       pmc−>mca_crcount−−;

Insert wait here

troduce post, wait (see
Figure 1) in the loop body
and then optimize the place-
ment of the synchroniza-
tion primitives to facili-
tate efficient parallel ex-
ecution of the loop (the
lines 1735–1746 after op-
timization are shown on
the right).

Essentially, the problem of efficient placement of the synchro-
nization primitives – post and wait in the current context – has
the following dual objectives: (a) how to place a post as early as
possible in the CFG and (b) how to place a wait as late as possi-
ble in the CFG. Arguably, the primitives can be placed optimally
manually. However, this is not pragmatic and is error-prone ow-
ing to the high complexity associated with carrying dependence
analysis of modern applications which span over millions lines of
code. Clearly, there is a need for an automatic approach to guide
the placement of the synchronization primitives. In this paper, we
address the above. In particular, the main contributions of the paper
are:
p We propose compiler techniques for efficient placement of the

post and wait synchronization primitives. Specifically, the
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proposed techniques percolate/move the post and wait prim-
itives upwards and downwards respectively, thereby exposing
higher level of TLP.

Several techniques have been proposed for code motion for
program optimization [13, 14, 15, 16, 17]. The key differences
between these and the proposed techniques are the following:

z Code motion induced by the existing techniques is primarily
geared towards either elimination of redundant computation
(e.g., [18]) or exploitation of instruction-level parallelism
(e.g., [13, 14, 15]). In contrast, the proposed techniques in-
duce code motion in order to minimize the effect of order-
ing, induced by the post, wait primitives, between the
different threads.

z The proposed techniques support downward percolation of
wait primitive. Furthermore, we show that upward perco-
lation does not necessarily effect the same code motion as
downward percolation.

p We present results to demonstrate the efficacy, w.r.t. perfor-
mance, of the proposed techniques using kernels extracted from
the industry standard SPEC CPU2000, CPU2006 benchmarks
[19], the Linux kernel and other widely used open source codes
such as sendmail. The optimized kernels were compiled using
the Intel C++ compiler and executed on a real machine.

Given that loops account for a large percentage of the total exe-
cution time in real programs [20], we focus on parallelization of
non-DOALL loops, i.e., loops in which there exists one or more loop-
carried dependences [21], via explicit synchronization.

The rest of the paper is organized as follows: The motivation
behind the problem addressed in this paper is presented in 2. Sec-
tion 3 introduces the terminology used in the rest of the paper. Sec-
tion 4 walks through a real-life example, extracted from a SPEC
CPU2006 [22] application, to illustrate the different kinds of code
motion enabled by the techniques presented in Section 5 to achieve
best placement of the synchronization primitives. The results are
presented in Section 6. An overview of related work is presented
in Section 7. Finally, Section 8 concludes with directions for future
work.

2. Synchronization Placement: Why Bother?
In the context of non-DOALL loops, the problem of synchroniza-
tion placement is to determine points in the loop body for placing
the post and wait primitives so as to: (a) preserve the program
semantics during multithreaded execution of the loop and (b) mini-
mize the “coupling-effect” (discussed later in this section) between
the different threads. The latter is necessary to extract high degree
of TLP. From hereon, we represent the call to the synchronization
primitives post and wait by the symbols t and s respectively
and all the other operations by the symbol l.

Let us consider the scenario shown in Figure 2. A solid line
in the figure represents the loop body. For simplicity of exposi-
tion, we consider a two thread case in the rest of the section. Each
thread is divided into segments delimited by either the post or the
wait primitive. From the figure we see that segments S1, S3 can
be executed in parallel with no restrictions. However, the execu-
tion of segment S4 is dependent on the completion of segment of
S1. We refer to this dependence between segments of the different
threads as “coupling”. Note that the execution of the first segment
of any thread is not dependent on any other segment. If there is a
post/wait primitive at the top of the loop body, then the first seg-
ment is empty. If a segment starts with the post primitive, it can
be executed as soon as its preceding segment has finished execu-
tion. From Figure 2 we note that percolating the wait primitive on
thread T2 downwards would shorten the length of the dependent

segment S4, denoted by `(S4), which in turn reduces the coupling
between the two threads.
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Figure 2. Illustrating the impact of pipeline bubbles
Next, we analyze the coupling between the threads T1 and T2

when `(S1) ≈ `(S3) � `(S4) (see Figure 3 (a)). Based on
the short lengths of the segments S1 and S3 one may expect an
early execution of the post, wait primitives. This may give an
impression of a weak coupling between the threads T1 and T2.
However, this is not necessarily true as exemplified by Figure 3 (b).
From the figure we see that a pipeline bubble prior to the execution
of the post primitive will result in idling of thread T2. In order
to mitigate the effect of this, the wait primitive should always be
placed (in the loop body) as late as possible.
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Figure 3. Illustrating the impact of pipeline bubbles
2.1 Placement Scenarios
In the vanilla case, the post, wait primitives can be placed by
simply identifying the operations corresponding to the loop-carried
dependence(s). However, this may not result in the best placement
of post, wait. The latter stems from the fact that the operations
may be percolated upwards/downwards which may in turn result
in better placement, compared to the vanilla case, of the post and
wait primitives.

Figure 4 illustrates the different scenarios corresponding to the
placement of the post, wait primitives. For simplicity of expo-
sition we only consider a pair of post, waits. We classify the
placement of the post, wait primitives into the following two
categories:

p Case I: A post is placed above a wait. In such a scenario, the
upward percolation of post and the downward percolation of
wait are decoupled from each other. In other words, the former
does not limit the latter and vice-versa.

p Case II: A wait is placed above a post. In such a scenario
there are two possibilities:
a) There does not exist a true dependence between the wait

and the post.2 Thus, the post can be percolated upwards
beyond the wait (see Figure 4 Case II (a)).

b) There does exist a true dependence between the wait and
the post. Code motion in such a scenario involves an inter-
esting trade-off.

2 An anti-dependence can be eliminated via renaming, as illustrated in
Figure 6.
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(a) (b)

B[i] = A[i−1] + C[i]

A[i] = B[i] + 2

Case I

A[i] = ...
<post>

<wait>
... = A[i−1] + B[i]

<wait>

<post>
A[i] = ...

... = A[i−1] + B[i]

<post>

<wait>

Figure 4. Different synchronization placements

(i) Scheduling the post as early as possible results in an
early scheduling of the wait. This may in turn induce
“false” partial ordering between the operations of differ-
ent iterations.

(ii) Scheduling the wait as late as possible delays the
scheduling of the post. This would in turn delay the
scheduling of the operations after the call to the post
primitive.

The trade-off arises only when the wait-post segment
does not lie on a critical path –a critical path is the longest
path in a DAG [23] – of the data dependence graph of the
given loop, ignoring the loop-carried dependences. In the
context of the running example, the conflict arises due to the
flow dependence, based on B[i], between wait and post.
However, one can potentially compact the wait-post seg-
ment subject to dependences.

3. Terminology
Let N denote the set of nodes n0, n1, . . . in a flow graph; node
n0 is the start node. We use two set-valued functions PRED and
SUCC, such that for each n ∈ N, PRED(n) is the set of all imme-
diate predecessors of n and SUCC(n) is the set of all immediate
successors of n. At any node nj , we denote the incoming edges by
Ij and exiting edges by Ej .

Execution begins at the start node and proceeds sequentially
from node to node. When the control reaches a particular node, all
operations in the node are evaluated concurrently; the assignments
update the registers or memory locations and the conditionals re-
turn the next node in the execution sequence. Operations evalu-
ated in parallel perform all reads before any assignment performs a
write. Write conflicts within a node are not permitted.

A node may contain at most one conditional initially; however,
as operations are percolated up (explained further in Section 5),
a node may contain multiple conditionals. We model the set of
conditionals in a node as a directed acyclic graph (DAG) [24].
Each conditional in the DAG has two successors corresponding to
its true and false branches. Further, a successor of a conditional
is either another conditional or a pointer to a node. The DAG of
conditionals is assumed to be rooted, i.e., it has a single element
with no predecessors. To evaluate a DAG in a node, a (unique) path
from the root to a leaf node is selected such that the branches on
the path correspond to the value (true or false) of the corresponding
conditionals on the path. Evaluation of the DAG returns the node
that terminates this path.

Given a DAG of conditionals, we define three set-valued func-
tions: sp(x) denotes the set of operations above a conditional x,

st(x) denotes the set of operations on the true branch of x, and
sf (x) denotes the set of operations on the false branch of x. For
example, consider the node shown in Figure 5. Node n consists
of a DAG of conditionals, where x is a conditional operation and
a, b, c are DAG of conditionals themselves. In this case, sp(x) =
a, st(x) = b and sf (x) = c.

b c

a

x
n ft

Figure 5. A DAG of conditionals
Lastly, given two operations u, v with a loop-carried depen-

dence between them u→ v [25], we say that u is the source and v
is the sink.

4. Synchronization Placement in Real-Life
Let us consider the loop shown in Figure 6 (a). The loop is taken
from 464.h264ref:block.c:632, a benchmark in the SPEC
CINT2006 suite [26]. On analysis we observe that the loop is a
non-DOALL loop owing to the following:

a) There is a recurrence based on the variable run, shown by
dashed arrows in the figure. Note that the recurrence cannot be
parallelized via reduction.

b) There is a recurrence based on the variable scan pos.

c) There is a potential output dependence between the write to the
array DCLevel in the different iterations.

There is no aliasing between the writes to the array M4 in the
different iterations. This is due to the fact that for each value of
the iterator coeff ctr, the pair (i, j) has a different set of values.
The set of values for (i, j) are known at compile time. For example,
FIELD SCAN is defined as follows (block.h:41):

const byte FIELD_SCAN[16][2] =
{

{0,0},{0,1},{1,0},{0,2},
{0,3},{1,1},{1,2},{1,3},
{2,0},{2,1},{2,2},{2,3},
{3,0},{3,1},{3,2},{3,3}

};

Let vi
k denote the k-th operation in the i-th iteration and let it-

erations i and i + 1 be mapped on to threads T1 and T2 respec-
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B1

  if (input−>symbol_mode == UVLC && img−>qp < 10)
  {
    if (level > CAVLC_LEVEL_LIMIT)
    {
      level = CAVLC_LEVEL_LIMIT;
    }
  }

Insert wait here

B2

Insert post here

  if(!lossless_qpprime)
    M4[i][j]=sign(level,M4[i][j]);

}

v22:
v23:

Are independent 

  if(!lossless_qpprime)
    M4[i][j]=sign(level,M4[i][j]);

v22:
v23:

Insert post here

Insert wait here

B2

  if (input−>symbol_mode == UVLC && img−>qp < 10)
  {
    if (level > CAVLC_LEVEL_LIMIT)
    {
      level = CAVLC_LEVEL_LIMIT;
    }
  }

  run++;v8:

B1

tmp = M4[i][j];

for (coeff_ctr=0;coeff_ctr<16;coeff_ctr++)
{
  if (img−>field_picture || ( mb_adaptive && img−>field_mode ))
  {  // Alternate scan for field coding
      i=FIELD_SCAN[coeff_ctr][0];
      j=FIELD_SCAN[coeff_ctr][1];
  }
  else

      i=SNGL_SCAN[coeff_ctr][0];
      j=SNGL_SCAN[coeff_ctr][1];
  }
  run++;

v10:
v11:
v12:

v6:

 v5:
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 v1:

v9:
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  {

  if(lossless_qpprime)
    level= abs(M4[i][j]);
  else

(LevelOffset4x4Luma_Intra[qp_per][0][0]<<1)) >> (q_bits+1);

      level= (abs(M4[i][j]) * LevelScale4x4Luma_Intra[qp_rem][0][0] +

v13:

v14:

v15:

O
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    DCLevel[scan_pos] = sign(level,M4[i][j]);

  if (level != 0)
  {

    DCRun  [scan_pos] = run;
    ++scan_pos;
    run=−1;
  }

v16:

v17:
v18:
v19:
v20:

v8:

Before Optimization

v7:

After Optimization

for (coeff_ctr=0;coeff_ctr<16;coeff_ctr++)
{
  if (img−>field_picture || ( mb_adaptive && img−>field_mode ))
  {  // Alternate scan for field coding
      i=FIELD_SCAN[coeff_ctr][0];
      j=FIELD_SCAN[coeff_ctr][1];
  }
  else

      i=SNGL_SCAN[coeff_ctr][0];
      j=SNGL_SCAN[coeff_ctr][1];
  }

v6:

 v5:

 v4:
 v3:

 v2:

 v1:

  {

}

(LevelOffset4x4Luma_Intra[qp_per][0][0]<<1)) >> (q_bits+1);

v10:
v11:
v12:

v9:   if(lossless_qpprime)
    level= abs(M4[i][j]);
  else
      level= (abs(M4[i][j]) * LevelScale4x4Luma_Intra[qp_rem][0][0] +

v13:

v14:

v15:

v7:

    DCLevel[scan_pos] = sign(level,tmp);

  if (level != 0)
  {

    DCRun  [scan_pos] = run;
    ++scan_pos;
    run=−1;
  }

v16:

v17:
v18:
v19:
v20:

(b)(a)

Figure 6. Motivation for efficient synchronization placement

tively. Parallel execution of the loop in the absence of explicit syn-
chronization may violate the program semantics as vi+1

8 may get
executed before vi

20! To orchestrate the execution of threads in
the presence of dependences, synchronization primitives – post,
wait – are inserted in the loop body. The “natural” placement of
post, wait is marked in the shaded boxes in Figure 6 (a). The
wait in iteration i + 1 suspends the execution of T2 until the post
in iteration i has been executed by T1.

From the figure we note that the wait is placed “early” in the
loop body which limits parallel execution of operations v8, . . .,
v20 in (say) iterations i and i + 1. This is due to the ordering in-
duced by post in iteration i and wait in iteration i + 1. Likewise,
the post is placed “late” in the loop body which also limits the ex-
ploitation of TLP.3 In light of this, we pose the following questions
in general:
a) Can we percolate the wait downwards?

b) Can we percolate the post upwards?

To this end, we present novel techniques which alleviate the above
limitations. In the context of the running example, the code motion
induced by our techniques is shown in Figure 6 (b). In particular:

z wait has been percolated below operation v15. This enables
parallel execution of operations v9, . . ., v15 of different iter-
ations.

z Block B2 has been percolated upwards beyond v8. The validity
of the code motion stems from the fact that block B2 is indepen-

3 Again, note that while theoretically the post, wait could be better
placed by an expert programmer by hand, this is not practical and very error
prone, due to the issues already discussed.

dent of block B1 (see Figure 6 (a)), subject to memory renam-
ing. The “false” dependence between v17 and v23 is eliminated
by copying M4[i][j] into the variable tmp (see Figure 6 (b))
and passing tmp to v17. Block B2 is then percolated up beyond
operation v8. The proposed techniques support percolation of
both conditionals and non-conditionals. For better efficiency of
the synchronization placement process itself, trailblazing [27]
is employed to support hierarchical percolation of program re-
gions.

Arguably, block B2 can be percolated up even further, say,
along the else branch of the conditional v13. However, this is
unnecessary from TLP extraction perspective because in the
transformed loop, block B1 in the different iterations can be
executed in parallel. Admittedly, further upward percolation of
block B1 may yield higher levels of instruction-level paral-
lelism (ILP); however, this is out of scope of this paper.

Observe that the number of operations below wait is reduced from
16 to 6 using our techniques. In the next section we detail our
techniques for synchronization placement.

5. The Techniques
The problem of placement of the synchronization primitives gives
rise to the following questions:

p Which operations to percolate and in which direction – upwards
or downwards?

p How to percolate an operation? Specifically, what are the rules
that should be followed (during code motion) to guarantee pro-
gram correctness?

p How “far” (up or down) should an operation be percolated?
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Given a non-DOALL loop, the set of post(s) and wait(s) inserted
at their “natural” positions constitute the set of operations to be
percolated.4 There may exist multiple posts and waits in the CFG
corresponding to the different paths in the CFG. The posts are
percolated upwards whereas the waits are percolated downwards.
If dependences prevent either of the above, then corresponding
operations are “recursively” percolated upwards and downwards
respectively. Assists such as memory renaming are invoked on a
demand-driven basis to eliminate spurious dependences (as in the
example discussed in Section 4) which inhibit code motion.

We present a set of transformations to drive the percolation of
the post, wait synchronization primitives. The transformations
operate on adjacent nodes in the CFG and are applied iteratively.
The reason behind the latter is that the application of one trans-
formation may expose opportunities for further code motion using
another transformation (illustrated later in Figure 12). Although the
iterative application of these transformations allows the operations
to percolate to the top of the CFG, subject to dependences, in cases
corresponding to Case II(b) described earlier in subsection 2.1, we
limit the upward code motion up of operations other than the syn-
chronization primitives to the wait placed highest in the CFG; like-
wise, we limit the downward code motion of operations other than
the synchronization primitives up to the post placed lowest in the
CFG. For example, in Figure 6, although block B2 could be per-
colated above operation v13, its upward percolation is limited to
beyond the wait primitive. This is done to contain code explosion.
Also, further upward/downward code motion does not expose high
level of TLP (this is explained further later in this section); albeit, it
can potentially expose higher level of ILP, however, this is orthog-
onal to the current context. Note that the highest (lowest) position
of the wait (post) may change during iterative application of the
proposed transformations. The only restriction placed on the trans-
formations is that of respecting data dependences, which preserves
the sequential execution semantics of the original program. Next,
we detail the set of transformations to gear placement of the syn-
chronization primitives. The transformations presented herein build
upon the core transformations of percolation scheduling (PS) [28].
Conceivably, the proposed techniques could also be grafted on top
of any other ILP techniques [13, 29]. We chose PS owing to its
provable generality of code motion [14].

5.1 The “Simple” Case
In this subsection we present a technique for guiding the place-
ment of synchronization primitives in loops such as in Figure 1,
i.e., loops with no conditionals in the loop body. Specifically, we
present a transformation – referred to as Move-Op – for percolat-
ing an assignment operation upwards or downwards. Based on the
direction of code motion, we sub-classify the transformation into
Move-Op-Up and Move-Op-Down. We describe the former in de-
tail and present an illustrative real-life example. Move-Op-Down
induces code motion in a similar fashion to Move-Op-Up, albeit
in the downward direction. However, code motion induced by one
does not subsume the other, as shown at the end of this subsection.

Move-Op-Up moves an assignment operation x from a node n
to a node m along the edge 〈m, n〉 subject to the following: (a) no
conflict exist between the operations in n and the operations in m,
(b) x does not kill any live value [30] at m and (c) x does not write
to a shared memory location which is written along any path pass-
ing through m but not through n (this is the key differentiating as-
pect between Move-Op-Up and Move-Op proposed in [14]; further,
the importance of this constraint with respect to avoidance of data

4 Recall that, given a path in the CFG, a wait is inserted before the first
read of a shared variable whereas a post is inserted after the last write to a
shared variable.
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Figure 7. Move-Op-Up Transformation

race is explained later in subsubsection 5.1.2). Care should be taken
not to affect the computation along the paths passing through n but
not through m. To ensure this, the original node n is copied along
all such paths. The transformation is shown in Figure 7 wherein
the assignment operation x is moved from node n to node m; fur-
thermore, in order to preserve the semantic correctness, node n is
duplicated (n′) along the path corresponding to the incoming edge
I2.

Arguably, the duplication of n to n′ in Figure 7 can potentially
be prohibitively expensive if n comprises of a large number of
operations. One way to alleviate this is to insert an empty node
n′′ such that I2 points to n′′ and SUCC(n′′) = n and copy x in
n′′.

I 1I 1

E 1

x n’

I 2 I 2

E 1

E 2E 2

xx m

n

m

n

x

x

Figure 8. Move-Op-Down Transformation

The Move-Op-Down transformation is an “inverse” of Move-
Op-Up. Move-Op-Down is shown in Figure 8 wherein the assign-
ment operation x is moved from node n to node m. In order to
preserve the semantic correctness, node n is duplicated (n′) along
the path corresponding to the outgoing edge E1. The downward
percolation of x is subject to the following: no conflict exists be-
tween the operations in n and the operations in m, x does not kill
any live value at m and x does not write to a shared memory lo-
cation which is written along any path passing through m but not
through n

5.1.1 Move-Op-Up < Move-Op-Down
Let us consider the data dependence graph shown in Figure 9. From
the figure we see that the wait can be scheduled in parallel with ei-
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Figure 9. Move-Op-Up < Move-Op-Down
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ther of the following: {v2, v3, v4, v5}. The schedules obtained us-
ing Move-Op-Up and Move-Op-Down are shown in Figures 9 (b)
and (c) respectively. In Figure 9(b) the wait is scheduled in parallel
with v2 (the upward percolation of the wait is shown with a dotted
arrow). This induces a “false” partial ordering between the execu-
tion of the operations v3, v4, v5 between two iterations. In other
words, Move-Op-Up does not guarantee the placement of a wait
primitive as late as possible. On the contrary, the wait is scheduled
in parallel with v5 in Figure 9(c) (the downward percolation of the
wait is shown with a dotted arrow). This corresponds to the latest
position the wait can be scheduled.

The above highlights that both Move-Op-Up and Move-Op-
Down are required to guarantee best placement of the post, wait
primitives! If the wait-post segment lies on a critical path of the
data dependence graph of the given loop, then both Move-Op-Up
and Move-Op-Down would effect the same placement of post,
wait primitives!

5.1.2 Discussion
Conceivably, Move-Op-Up can be extended to mimic Move-Op-
Down, as shown in Figure 10.
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v2 <wait>
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Figure 10. Extended Move-Op-Up

Let us revisit Figure 9(a). From the figure we see that the upward
percolation of {v3, v4, v5} to the node containing the wait is
limited by the dependence on v2. Also, v2 cannot be percolated
upwards due to its dependence on v1. To enable the upward per-
colation of v3, we introduce an empty node between the nodes
containing v1 and v2 as shown in Figure 10(b). Then, v2 is per-
colated to the empty node and v3 is percolated to the node contain-
ing the wait, see Figure 10(c). This procedure is repeated until v4
is percolated above the wait. The final schedule is shown in Fig-
ure 10(d) which is the same as Figure 9(c). Thus, extended Move-
Op-Up can be used to drive downward percolation. However, this is
non-intuitive as it is not obvious when to introduce an empty node.
Therefore, we use Move-Op-Down to drive downward percolation
of a wait primitive.

Lastly, Figure 11 highlights the difference between code motion
in the context of sequential execution and multithreaded execution.
From Figures 11(a) and (b) we observe that the post along the false
branch of the conditional can be percolated above the operation v2,
assuming that A[i] is not read before the post along the branch.
The facilitates an early write to A[i] along the false branch. The
above is valid for sequential execution, assuming that A[i] is not
read before the post along the true branch, but can potentially re-
sult in data races during multithreaded execution. This is illustrated
in Figure 11(c), wherein we assume that thread T2 takes the false
branch of the conditional v3. An early execution of the post by
thread T1 may result in A[i]=f (instead of A[i]=2*f) being read
by operation v7 on thread T2 (recall that the threads execute asyn-
chronously with respect to each other), which corresponds to a data
race. Therefore, in the context of upward percolation of a post we
forbid such type of code motion. Note that if the write to A[i] is
not read in a subsequent iteration (in general, the write is private
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Figure 11. Limiting upward percolation

to the current iteration), then the code motion illustrated in Figure
11(b) is permitted, as in the case of vanilla Move-Op transformation
of percolation scheduling [28].

In contrast, the code motion described above is permitted for
delaying a wait along a given path, subject to the preservation of
the program semantics during sequential execution. This does not
result in data races but would cause execution of a redundant of a
wait along the other path(s).

To summarize: (a) Move-Op-Up is used for upward percolation
of a post and the operations it is dependent on (b) Move-Op-Down
is used for downward percolation of a wait and the operations that
depend on it.

5.2 Handling Conditionals
Recall that Move-Op-{Up/Down} transformations do not support
percolation of conditionals. This can limit the upward and down-
ward percolation of the post and wait respectively, as shown in
Figure 12.

A[i] = x
<post>

v3

v4

v5

v2

v1

v’3

v’4

v’5

v3

v4

v5

v2

v’3

v’4

v’5

v1

v1

(a)

t f

if (x == ...)

A[i] = −x
<post>

... = A[i] + 2

t f

if (x == ...)

(b)

Figure 12. Illustration of upward percolation of conditionals

From Figure 12(a) we observe that post cannot be percolated
to the node containing the conditional v2 as it would kill the
value of A[i] being read by v′3. This delays the execution of
the post after the execution of v1. However, if v2 is percolated
above v1 then the post can be executed in parallel with v1 (see
Figure 12(b)). In order to address such scenarios, we present a
transformation, referred to as Move-Test, for upward/downward
percolation of conditionals.

The Move-Test transformation is shown in Figure 13, where a
represents a DAG of conditionals not reached by x, b represents a
DAG of conditionals reached on x’s true branch, and c represents
a DAG of conditionals reached on x’s false branch. Move-Test
percolates the conditional x upwards from node n to node m along
the edge 〈m, n〉 provided that no dependency exists between x
and the operations of m. The conditional being moved up may
come from an arbitrary point in a DAG of conditionals. In order
to preserve the program semantics, the transformation does the
following:
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Figure 13. Move-Test Transformation

z It copies n on the paths passing through n but not through m. In
Figure 13, the node n is copied (n′) on the path corresponding
to the incoming edge I2.

z It “splits” the node n into two nodes nt and nf , where nt and
nf correspond to the true and false branches of x, and copies
the DAG of conditionals a in nt and nf .

The Move-Test transformation may catalyze further (i.e., be-
yond what can be achieved via Move-Op in isolation) upward/downward
percolation of post, wait primitives and other operations and as-
sist in further compaction of the wait-post segment (described
in Section 2.1). Next, we present the algorithm for the Move-Test
transformation.

Transformation Move-Test (v, m, n).

Let the false branch edge of a conditional x be denoted by xf and
the true branch edge be denoted by xt.

/* Duplicate n */
for each node p ∈ PRED(n)− {m} do

Create a copy n′ of node n
PRED(n′)← p
SUCC(n′)← SUCC(n)

endfor
/* Create nodes corresponding to the true and false branches
* of x */
nt ← sp(x) ∪ st(x)
nf ← sp(x) ∪ sf (x)
Move x to the bottom of the conditional tree of node m
Delete n
Along xt, SUCC(x)← nt

Along xf , SUCC(x)← nf

Arguably, a conditional or a DAG of conditionals can be moved
to the top of the program’s control flow graph (CFG), subject to
unrestricted code duplication. However, in the context of extraction
of TLP, we restrict the upward percolation of a conditional up to a
sink of a loop-carried dependence placed highest in the CFG. This
is done to limit code explosion induced by upward percolation of
conditionals. For example, in Figure 13, the upward percolation of
the conditional x is limited to node m, if the operations in the nodes
preceding m in the CFG do not induce a loop-carried dependence.

Next, we illustrate the application of the Move-Test transforma-
tion with the help of an example code taken from a real-life code.

EXAMPLE 1. Let us consider the loop shown in the Figure 14(a),
taken from 254.gap:costab.c:561. The macros in the loop body
are defined as follows:
#define INT TO HD(INT) ((TypHandle) (((long)(INT) <<
2) + T INT))
#define HD TO INT(HD) (((long)HD) >> 2)
#define T INT 1
A schedule before transformation is shown in Figure 14(b). The op-
erations v1, v2 can be executed in parallel as there does not exist
any data dependence between them. In contrast, the operations
v5, v6 cannot be executed in parallel as there may exist an output
dependence between v5, v6.5 The wait primitive is placed before
the operations v3, v4, see Figure 14(b), to preserve the potential
flow dependence between v8 in iteration ` and v3 in iteration m,
where ` < m. Similarly, the post primitive is placed after v17 to
preserve the potential output dependence between v17 in iteration
` and v5 in iteration m, where ` < m. Most importantly, before
transformation, we observe that the scheduling of operations v11,
. . ., v17 is serialized w.r.t. the scheduling of operations v5, . . .,
v9. Clearly, this delays the scheduling of the post primitive which
adversely affects performance.

The schedule after applying the Move-Test transformation is
shown in Figure 14(c). From the schedule we see that the condi-
tional v10 has been percolated above the operations v3 and v4.
This necessitates the duplication of the operations v3, . . ., v9
along the false branch of the conditional. The upward percolation
of the conditional v10 enables the compaction of the basic block
along the false branch of v10. This implicitly effects upward perco-
lation of the post! Note that the operations v11 and v12 cannot be
moved to node containing v6 due to a potential aliasing of i[c2]
with either (or both) of i[lcos], i[mcos]. On comparing the
two schedules, we note that the transformation reduced the sched-
ule length from 16 steps to 11 steps – a reduction of 31%!

Another important aspect of the Move-Test transformation is
that it facilitates “customized” compaction of the different paths.
In the context of the running example, this is evidenced by the
different position of, say, the operation v15 along the true and the
false branches of v10 (see Figure 14(c)).

Although v10 could be percolated to the top of the CFG, it
would require duplication of operations v1 and v2. More impor-
tantly, the above is unnecessary as further upward percolation of
v10 (than shown in Figure 14(c)) does not effect further com-

5 The dependence will materialize at run-time if the values of c1 and c2 are
equal.
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                for ( k = 1; k <= nrgen; k++ ) {

                    i = PTR( ptTable[2*k] );

                    c1 = HD_TO_INT( h[lcos] );

                    c2 = HD_TO_INT( h[mcos] );

                    if ( c1 != 0 )  i[c1] = INT_TO_HD( mcos );

                    if ( c2 != 0 )  i[c2] = INT_TO_HD( lcos );

                    tmp     = h[lcos];

                    h[lcos] = h[mcos];

                    h[mcos] = tmp;

                    if ( i != h ) {

                        c1 = HD_TO_INT( i[lcos] );

                        c2 = HD_TO_INT( i[mcos] );

                        if ( c1 != 0 )  h[c1] = INT_TO_HD( mcos );

                        if ( c2 != 0 )  h[c2] = INT_TO_HD( lcos );

                        tmp     = i[lcos];

                        i[lcos] = i[mcos];

                        i[mcos] = tmp;

                    }

                }

                    h = PTR( ptTable[2*k−1] );
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Figure 14. Illustration of the Move-Test transformation

paction of the basic blocks along the true and the false branches
of v10.

Upward percolation of the post in the preceding example corre-
sponds to Case II (b) in Figure 4. In other words, the upward perco-
lation results in compaction of the wait-post segment. However,
in general, in conjunction with Move-Op, Move-Test can drive the
respective upward and downward percolation of a post and a wait
in all the scenarios shown in Figure 4.

One of the concerns while applying Move-Test is code duplica-
tion. But, as shown later in Section 6, the code explosion incurred
is very minimal due to the presence of small number of condition-
als in loops (with high coverage, where coverage is defined as the
percentage of the total run time) in real programs. A detailed anal-
ysis of the trade-off between gain in TLP vs. code duplication is
beyond the scope of this paper. Note that the transformation itself
is decoupled from any heuristic used for assessing the trade-off
and thus, transformations which induce less code explosion may
be used (at the expense of less general code motions).

5.3 Eliminating Copies
Iterative application of the Move-Op-{Up/Down} and Move-Test
transformations may result in “redundant” copies of operations
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Figure 15. Unify-Up Transformation

along the different paths of the CFG. To eliminate the copies,
we propose the Unify-{Up/Down} transformation. The Unify-Up
transformation moves a copy of identical assignments operations
x from a set of nodes nj to a common predecessor node m. This
is done if no dependency exists between x and the operations of
m, x does not kill any value live at m and x does not write to a
shared memory location which is written along any path passing
through m but not through n. A node nj is copied along each path
passing through nj but not through m so as to preserve semantic
correctness. The Unify-Up transformation is illustrated in Figure
15.

The Unify-Down transformation is an “inverse” of Unify-Up,
wherein a copy of identical assignments operations x from a set
of nodes nj to a common successor node m. This is done if no
dependency exists between x and the operations of m, x does not
kill any value live at m and x does not write to a shared memory
location which is written along any path passing through m but not
through n. A node nj is copied along each path passing through
nj but not through m so as to preserve semantic correctness. The
transformation is shown in Figure 16.
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Figure 16. Unify-Down Transformation

5.4 Eliminating Redundant Operations
The Delete transformation proposed in [28] is used to remove a
node from the CFG if it is empty (contains no operations) or is un-
reachable. A node may become empty or unreachable as a result of
other transformations or elimination of redundant synchronization
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primitives. The transformation is illustrated in Figure 17, wherein
the empty node n (represented by a dashed circle) is deleted from
the flow graph. Note that an empty node has exactly one successor.
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E 1

E 1
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p

p

Figure 17. Delete Transformation

6. Results
In this section, we demonstrate the efficacy of the techniques pro-
posed in Section 5 using real codes. For this, we extracted kernels
from the industry-standard SPEC CPU2000, CPU2006 [31, 22]
benchmark suites, the Linux Kernel [12] (v2.6.23.1) and other open
source applications such as sendmail (v8.14.3) [32] and Apache
(v1.3.41) [33]. The details of the kernel set is given in Table 1.
We picked kernels from a wide variety of benchmark sets on pur-
pose, rather than concentrating on one benchmark set (e.g., SPEC
CPU2006), in order to illustrate the wide applicability of the pro-
posed techniques. Note that while in some of the kernels we in-
serted the synchronization primitives ourselves (as the original
source code of the benchmark is not multithreaded), in others –
e.g., IPVS – we used the synchronization placement in the original
source code as our baseline. Evaluation of the proposed techniques
on overall benchmarks is beyond the scope of this paper. The pri-
mary focus herein is to showcase a previously unexplored optimiza-
tion opportunity, and provide evidence of its practical applicability
in real codes using real hardware.

Kernel Suite Benchmark Source

L(gap) SPEC CINT2000 254.gap costab.c

L(lucas) SPEC CFP2000 189.lucas lucas distrib spec.f90

L1(vpr) SPEC CINT2000 175.vpr place.c

L2(vpr) SPEC CINT2000 175.vpr place.c

L3(vpr) SPEC CINT2000 175.vpr place.c

L1(bzip2) SPEC CINT2006 401.bzip2 blocksort.c

L2(bzip2) SPEC CINT2006 401.bzip2 compress.c

L1(h264ref) SPEC CINT2006 464.h264ref block.c

L2(h264ref) SPEC CINT2006 464.h264ref block.c

L(sjeng) SPEC CINT2006 458.sjeng see.c

L(ipvs) Linux Kernel ipvs ip vs est.c

L(ipv6) Linux Kernel ipv6 mcast.c

L(sendmail) Sendmail Sendmail engine.c

L(apache) Apache Apache os-aix-dso.c

Table 1. Kernel Set
Our baseline for performance comparison corresponds to ker-

nels in which synchronization primitives are inserted at their “nat-
ural” positions (refer to Section 1). We optimized the placement of
the synchronization primitives, using the techniques presented in
Section 5 and loop unrolling,6 as part of the source-to-source trans-
formation phase. We compiled the optimized kernels using the Intel
C++ compiler and ran the kernels on a real machine. The detailed
experimental setup is given in Table 2.

Note that none of the kernels listed Table 1 could not be par-
allelized via scalar/array privatization, OpenMP-type reduction or

6 Loop unrolling was employed for better tolerance of the threading over-
head.

System Dual Core Processor

Processor Intel R©Pentium R©Dual CPU E2140 @ 1.60GHz

L1 Cache 32 KB

L2 Cache 1024 KB

Memory 1025020 KB

Compiler Intel C++ Compiler v10.1

Compiler Flags -parallel -openmp -O3 -xN

Thread Library NPTL 2.6.1

OS Linux ubuntu 2.6.22-14-generic #1 SMP

Table 2. Experimental Setup

any other compiler technique such as induction variable elimina-
tion (IVE).

Figure 18 reports the performance gain achieved on the kernels
listed in Table 1. In each case, the speedup can be ascribed to the
better placement of the synchronization primitives which is in turn
driven by the proposed techniques.

Figure 18. Performance gain achieved via techniques proposed in
Section 5
From the figure we see that optimization of the placement of the
post, wait primitives via the techniques proposed in the earlier
section yields performance gains up to 60.34%. Again, the gains
reported above are w.r.t. multithreaded execution with vanilla syn-
chronization placement; of course, the gains would be much higher
with respect to sequential execution.

7. Previous Work
There is a large body of work in the areas of synchronization (at
both the compiler and the operating system level), elimination of
redundant synchronization, TLP exploitation, deadlock avoidance
and sequential consistency memory model. To limit the scope of
our discussion, due to space limitations, we focus our attention on
the work done in context of explicit synchronization. The main
focus of the existing techniques for the latter has been to reduce
the synchronization overhead, such as [34, 35, 36, 37, 38, 39, 40].
Other work in the context of thread synchronization has primarily
focused on the development of techniques for better pointer and
escape analysis to minimize the need for thread synchronization
[41, 42].

In [43], Cytron proposed to introduce delays in iterations of a
given non-DOALL loop to preserve lexically backward dependences
during parallel execution. The above assumed that the processors
execute at approximately the same rate and also assumed avail-
ability of infinite number of processors. The former does not hold
during multithreaded execution. Also, the above does not handle
lexically forward dependences. Midkiff and Padua proposed sev-
eral techniques for automatic generation of synchronization for DO
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loops [44]. Later on, Kasahara et al. and Girkar proposed tech-
niques for deriving conditions for explicit task synchronization in
[45] and [46] respectively. None of the aforementioned techniques
do not support for upward/downward code motion of the synchro-
nization primitives which, as demonstrated in the previous section,
plays a vital role in extracting higher degree of TLP.

In [47] , Cytron et al. proposed a technique for exploiting nested,
fork-join parallelism. A join acts as a barrier to all the previ-
ously forked threads, thereby limiting exploitation of TLP. Subse-
quently, Sarkar proposed a technique for instruction-reordering for
exploiting higher degree of parallelism in the fork-join execution
model[48]. The techniques proposed in the above works are not ap-
plicable under the post, wait-based point-to-point synchroniza-
tion model. This stems from the fact that in the post, wait model
threads need not wait for each other to finish execution.

Recently, Tian et al. proposed a technique for dynamic recogni-
tion of synchronization operations in multithreaded programs [49]
and showed its applicability for data race detection. They do not ad-
dress the problem of efficient placement of synchronization primi-
tives. Hence, their technique is complementary to the one presented
in this paper.

8. Conclusion
In this paper we presented techniques to drive advance paralleliza-
tion of non-DOALL loops that could not be parallelized very well
using the existing techniques. We demonstrated the efficacy of our
techniques using real codes, such as the Linux kernel, wherein the
post, wait synchronization primitives are placed at their “natu-
ral” positions – which may and often is suboptimal – by experts
(indeed those writing critical code and are very much interested in
very efficient execution of their code), as well as other serial codes.
The placement of the synchronization primitives was optimized us-
ing the proposed techniques. We achieved speedups up to 60.34%
on a real machine.

As future work, we intend to develop techniques to capture data
affinity while mapping program regions on to the different cores of
a multi-core system.
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[3] J. Labarta and E. Ayguadé. GTS: Extracting full parallelism out of DO loops. In
Proceedings of the Parallel Architectures and Languages Europe, pages 43–54,
Eindhoven, The Netherlands, 1989.

[4] G. Granunke and S. Thakkar. Synchronization algorithms for shared-memory
multiprocessors. IEEE Computer, 23(6):60–69, 1990.

[5] Z. Li. Compiler algorithms for event variable synchronization. In Proceedings of
the 1991 ACM International Conference on Supercomputing, Cologne, Germany,
June 1991.

[6] A. Krishnamurthy and K. Yelick. Optimizing parallel programs with explicit syn-
chronization. In Proceedings of the SIGPLAN ’95 Conference on Programming
Language Design and Implementation, pages 196–204, La Jolla, CA, 1995.

[7] A. Aiken and D. Gay. Barrier inference. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
342–354, San Diego, CA, 1998.

[8] A. Kagi. Mechanism for Efficient Shared-Memory Lock-based Synchronization.
PhD thesis, Department of Computer Science, University of Wisconsin-Madison,
1999.

[9] D. S. Nikolopoulos and T. S. Papatheodorou. Fast synchronization on scalable
cache-coherent multiprocessors using hybrid primitives. In Proceedings of the
14th International Parallel and Distributed Processing Symposium, pages 711–
720, Cancun, Mexico, 2000.

[10] D. F. Bacon, R. Konuru, C. Murthy, and M. J. Serrano. Thin locks: Featherweight
synchronization for java. ACM SIGPLAN Notices, 39(4):583–595, 2004.

[11] A. Kejariwal, X. Tian, H. Saito, W. Li, M. Girkar, U. Banerjee, A. Nicolau, and
C. D. Polychronopoulos. Lightweight lock-free synchronization methods for
multithreading. In Proceedings of the 20th ACM International Conference on
Supercomputing, pages 361–371, Cairns, Australia, 2006.

[12] The Linux Kernel Archives. http://www.kernel.org.
[13] J. A. Fisher. Trace Scheduling: A technique for global microcode compaction.

IEEE Transactions on Computers, C-30(7):478–490, July 1981.
[14] A. Nicolau. Percolation scheduling : A parallel compilation technique. Technical

Report TR85-678, Dept. of Computer Science, Cornell University, May 1985.

[15] W. M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.
Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm,
and D. M. Lavery. The superblock: An effective technique for VLIW and super-
scalar compilation. The JournaL of Supercomputing, 7(1-2):229–248, November
1993.
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