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Abstract. Pointer analysis is one of the most important static analyses
during compilation. While several enhancements have been made to scale
pointer analysis, the work on parallelizing the analysis itself is still in in-
fancy. In this article, we propose a parallel version of context-sensitive
inclusion-based points-to analysis for C programs. Our analysis makes
use of replication of points-to sets to improve parallelism. In comparison
to the former work on parallel points-to analysis, we extract more paral-
lelism by exploiting a key insight based on monotonicity and unordered
nature of flow-insensitive points-to analysis. By taking advantage of the
nature of points-to analysis and the structure of constraint graph, we de-
vise several novel optimizations to further improve the overall speed-up.
We show the effectiveness of our approach using 16 SPEC 2000 bench-
marks and five large open source programs that range from 1.2 KLOC
to 0.5 MLOC. Specifically, our context-sensitive analysis achieves an av-
erage speed-up of 3.4× on an 8-core machine.

1 Introduction

Points-to analysis [1, 28, 6, 4, 17] is a method of statically determining whether
two pointers may point to the same location at runtime. The two pointers are
then said to be aliases of each other. While pointer analysis is immensely helpful
for compiler optimizations and extracting parallelism, the analysis itself can be
run in parallel to take advantage of the multiple resources available.

There is very little literature on parallelizing pointer analysis. Kahlon [17]
proposed bootstrapping that identifies alias sets using Steensgaard’s analysis [28]
and then Andersen’s analysis [1] is simulated to run in parallel on each alias set.
Lojo et al. [20] proposed speculative parallelization of inclusion-based pointer
analysis to expose amorphous data-parallelism in C programs. Recently, Ed-
vinsson et al. [7] proposed parallel points-to analysis for multi-core machines by
exploiting the independence of polymorphic calls and control-flow branches of
Java programs. Our method finds more fine-grained parallelism compared to the
above methods.

A typical method of parallelizing points-to analysis involves two tasks: (i)
identifying non-conflicting constraints and (ii) analyzing the non-conflicting con-
straints in parallel. The parallelism extracted by the existing techniques is limited
due to the inherent irregular nature of the applications (e.g., several SPEC 2000



benchmarks). For instance, speedup in parallel online analysis time in Lojo et
al.’s work [20] is maximum 2x using 8-cores over a set of open source C programs
analyzed, while in Edvinsson et al.’s work [7] it is maximum 1.76 using 8-cores
over a set of Java benchmarks. Thus, we see that irregularity of applications
(as defined in [20]) has been a stumbling block while extracting parallelism for
performing points-to analysis.

We observe that the monotonicity of a flow-insensitive points-to analysis can
help us achieve more parallelism. A key insight is that by allowing the analy-
sis to keep multiple copies of points-to sets, one can reduce dependence across
constraints. In fact, with sufficient number of copies, task (i) above gets trivial-
ized since no two constraints conflict! This allows us complete flexibility while
scheduling constraints on multiple cores. On the downside, this kind of data
replication can affect analysis soundness, as certain data flow facts may not get
computed. However, by exploiting monotonicity property of a flow-insensitive
analysis, we show that the analysis soundness can be preserved by carefully
merging the multiple copies in each iteration of the analysis. This helps us de-
velop a replication-based, yet sound, parallel analysis.

Major contributions of this paper are as below.

– A replication-based data flow analysis to improve parallelism and a novel
method based on monotonicity and unordered nature of flow-insensitive al-
gorithm to achieve a sound analysis in the presence of replicated data.

– Instantiating the data-flow analysis to develop a replication-based parallel
points-to analysis.

– Several engineering optimizations specific to pointer analysis, like parallel
online cycle elimination and limited cycle detection for extracting more par-
allelism and for a scalable implementation.

– Detailed evaluation of our method using SPEC 2000 benchmarks and five
large open source programs (httpd, sendmail, ghostscript, gdb and wine-

server). Our context-sensitive (insensitive) inclusion-based parallel version
achieves an average speed-up of 3.4x (3.0x) on an 8-core machine.

2 Motivation and Background

While our approach applies to several data-flow analyses, we illustrate it by
parallelizing Andersen’s inclusion-based analysis [1]. Thus, we deal with flow-
insensitive points-to analysis. For analyzing a general purpose C program, it is
sufficient to consider all pointer statements of the following forms: address-of
assignment (p = &q), copy assignment (p = q), load assignment (p = ∗q) and
store assignment (∗p = q) [24]. Address-of constraints can be evaluated only
once. Thus, the analysis iterates over the other three kinds of constraints until
a fixed-point.

Consider the following example program.
p = &a, a = &x, b = &y, c = &z, d = &w, q = p, a = b,

e = a, r = q, a = c, s = r, e = ∗a, t = s, a = d, ∗e = a



Statement Iteration 0 Iteration 1 Iteration 2 Iteration 3

p = &a p→{a}
a = &x a→{x}
b = &y b→{y}
c = &z c→{z}
d = &w d→{w}
q = p q→{a}
a = b a→{y}
e = a e→{x,y} e→{z,w}
r = q r→{a}
a = c a→{z}
s = r s→{a}
e = *a
t = s t→{a}
a = d a→{w}
*e = a x,y→{x,y,z,w} z,w→{x,y,z,w}

Table 1: Running example (13 steps: 10 for Iteration 1 and 3 for Iteration 2)

A sequential analysis of the above program is given in Table 1. Iteration 0
shows the initial points-to information after processing address-of constraints.
We denote points-to information as a set of variables (e.g., {x,y}) and the points-
to relation using an arrow (→). The analysis requires three iterations to reach a
fixed-point which contains the following points-to facts.

p, q, r, s, t → {a}, a, e, x, y, z, w → {x, y, z, w},
b → {y}, c → {z}, d → {w}

For exposition purpose, we define a step as a computation of points-to in-
formation of a variable. Intuitively, it is proportional to the amount of time
required to analyze a constraint. Thus, each copy and load constraint requires
a single step, while each store constraint requires zero or more steps depending
upon the points-to information of the dereferenced variable. Thus, the above
example requires 13 steps (of non-address-of constraints) to reach a fixed-point
for a sequential analysis. It is easy to see that the non-address-of constraints in
the example require at least 12 steps to compute the fixed-point.

Analyzing a constraint DST = SRC involves (i) reading points-to information
of SRC and (ii) updating points-to information of DST. Depending upon the
type of the constraint, we have different read and write sets as shown in Table 2.
The read-set for the load constraint (p = *q) contains not only the pointees of q
but also q itself. Similarly, the read-set of the store constraint (*p = q) contains
both p and q. Due to weak-typing of C language, read and write sets for a
constraint need not be mutually exclusive. For instance, following statement is
valid (with type-casting): p = *p, and its read-set as well as write-set contain p.

Two constraints C1 and C2 conflict with each other if at least one of the
following three conditions holds: (i) ReadSet(C1) ∩ WriteSet(C2) 6= φ (ii) Write-
Set(C1) ∩ ReadSet(C2) 6= φ (iii) WriteSet(C1) ∩ WriteSet(C2) 6= φ.



Constraint Read Set Write Set

p = q {q} {p}
p = *q {q} ∪ {x : q → {x}} {p}
*p = q {q, p} {x : p → {x}}

Table 2: Read-Write sets for points-to constraints

The conflict relation is reflexive, symmetric and non-transitive. The above
conditions can be easily generalized to multiple constraints. Non-conflicting con-
straints can be analyzed in parallel. Therefore, identifying the constraints that
can be evaluated in parallel involves computing read and write (RW) sets of
various constraints in some form. As more points-to information gets computed,
the read sets of load constraints and the write sets of store constraints also go
on increasing in size, potentially reducing opportunities for parallelism as the
analysis progresses. Due to monotonic nature of the flow-insensitive analysis,
the RW sets never shrink. Note that since the points-to sets are computed dy-
namically, the RW sets need to be updated dynamically. Using the RW sets, one
can parallelize analyzing the example as shown in the parallel schedule below.

Thread T1: q = p, r = q, s = r, t = s

Thread T2: a = b, a = c, a = d, e = *a, e = a, *e = a

The parallel schedule involves analyzing the two sets of constraints using
two threads T1 and T2. Compared to 12 (minimum number of) steps of the
sequential analysis, the parallel analysis requires at most 9 steps to reach the
fixed-point: one step each for the first five copy and load constraints of T2 and
four steps for the last store constraint of T2 as pointer e points to four variables
{x, y, z, w}. However, due to conflicting constraints, it is not possible to take ad-
vantage of more than two cores for this example using a naive parallel points-to
analysis. Thus, even if a points-to analysis is provided with four or eight cores,
the parallel analysis would still require at least 9 steps. Further, computing and
maintaining RW sets, identifying conflicts across constraints and generating a
parallel schedule is a time-consuming process. As the RW sets of a constraint
change, it needs to be checked for conflict against all other non-conflicting con-
straints. This checking requires O(n2) operations per change in the read-write

set where n is the number of constraints. Conflicting constraints are common-
place [13] and therefore, a naive parallel analysis is going to be prohibitive in
terms of not only the amount of parallelism but also the parallel execution time.
Our technique illustrates how to extract more parallelism efficiently even when
several conflicting constraints exist.

3 Replication-based Analysis

In this section we first introduce our replication-based approach at a higher
level by giving an outline of the algorithm. We prove that a replication-based



approach is sound for a monotonic, unordered data-flow analysis (e.g., a flow-
insensitive points-to analysis). We then explain in detail how replication works
for our parallel points-to analysis algorithm.

A flow-insensitive analysis ignores the control-flow information and assumes
that program statements may be executed in any order. We state a well-known
property of flow-insensitive data-flow analysis to prove soundness of our method.

Theorem 1. A flow-insensitive data-flow analysis computes the same fixed-

point irrespective of the order in which the program statements are analyzed.

3.1 Algorithm Outline

A data-flow analysis is monotonically increasing if it never kills a computed
data-flow fact. A flow-insensitive points-to analysis is an example of a monoton-
ically increasing (or simply, monotonic) analysis whereas a flow-sensitive points-
to analysis is an example of a non-monotonic analysis. Since flow-insensitive
points-to analysis is monotonic and its solution does not depend upon the order
of evaluation, our method partitions the set of constraints arbitrarily, analyzes
them in parallel, merges the individual solution sets and repeats this process
until a fixed-point, as shown in Algorithm 1. The merge operation performs a
union of points-to information for each pointer. Thus, if thread T1 computes the
following points-to information: p → {a}, q → {b}, and thread T2 computes the
following points-to information: p → {c}, q → {a,b}, r → {c}, then the merge
operation on Line 5 of Algorithm 1 computes the following points-to information:
p → {a,c}, q → {a,b}, r → {c}.

We first prove that the parallel algorithm computes a safe solution. It is suffi-
cient to prove that the algorithm computes the same solution as that computed
by a sequential analysis.

Theorem 2. Algorithm 1 is sound.

Proof. Let SEQ be the least fixed-point points-to set computed by a flow-
insensitive sequential analysis. We prove that Algorithm 1 computes a solution
PAR which equals SEQ, i.e., SEQ = PAR. In this proof, we make a simplistic
assumption that in every iteration of the parallel analysis, the constraints are
executed in the same order. A multithreaded schedule of the input points-to
constraints C can then be represented as an interleaving of the constraints, with
constraints analyzed in parallel placed in an arbitrary (but fixed) order. This
interleaving forms a sequential ordering S over all the constraints and since it is
derived from the parallel schedule, its least fixed-point solution SEQ′ must equal
PAR, i.e., SEQ′ = PAR. Now, assume a sequential flow-insensitive analysis ana-
lyzing C in the order denoted by S. By Theorem 1, the least fixed-point solution
SEQ′ computed by this sequential analysis must equal SEQ, i.e., SEQ = SEQ′.
Therefore, SEQ = PAR, proving that Algorithm 1 computes the same solution
as that computed by a sequential analysis.



Algorithm 1 Outline of our parallel points-to analysis

Require: set C of points-to constraints, number of cores N
1: partition C arbitrarily into N threads
2: repeat

3: schedule N threads on N cores
4: wait for N threads to complete
5: merge points-to sets of N threads
6: until fixed-point

We would like to emphasize that both monotonicity and unorderedness are
the required properties of the underlying data-flow analysis for our parallel al-
gorithm to compute a safe result. Our algorithm is general and is applicable to
any analysis that is monotonic and unordered. For instance, it can be applied to
0-CFA [25].

3.2 Replication

Our method handles conflicting constraints by keeping multiple copies of the
conflicting variables and their associated points-to sets. For instance, the con-
straints p = q, r = p and p = s conflict. However, if they are analyzed in separate
threads T1, T2 and T3 respectively, our method creates a copy of p’s points-to
set in T1 and T3 since their write sets contain p. Since T2 only reads p, it con-
tinues to read the master (original) copy of p. The newly computed points-to
information of T1 and T3 is merged with that of the master copy of p at the
end of each iteration. Note that T2 would contain a copy of the points-to set
of r. Further note that it is possible to use multiple copies of variables since
the analysis is monotonic. If the analysis is non-monotonic (for instance, if it is
flow-sensitive) then naively making multiple copies of the points-to sets may not
preserve the solution.

The merge operation performs a union of points-to information for each
pointer. Merging of the points-to information for multiple pointers is done in
parallel. However, merging of local points-to information of a pointer with its
master copy is done in a sequential manner.

Table 3 shows the parallel analysis of the example program using our method.
Recall from Section 2 that a naive parallel analysis using read-write sets could
not take advantage of more than two cores. Therefore, we illustrate our technique
using three threads. Column 1 shows the thread number. Column 2 shows the
points-to constraints assigned to each thread. Column 3 and 4 show the new
points-to information created as a local copy and the merging of the local copies
with the master copies for Iteration 1. The local copies of variable v are denoted
as v’, v”, ... Further columns show the analysis for further iterations.

In contrast to three iterations of the sequential analysis, the parallel analy-
sis requires four iterations to reach the fixed-point. This happens because some
points-to information computed by the constraints partitioned across different



T Stmt Itr 1 Merge 1 Itr 2 Merge 2 Itr 3 Merge 3 Itr 4
q = p q’→{a}

1 a = b a’→{y}
r = q r’→{a}
e = a e’→{x,y} a→{y,z,w}, e’→{x,y,z,w} e→{z,w} z,w→{x,y,z,w}
a = c a”→{z} e→{x,y} x,y→{x,y,z,w} t→{a}

2 e = *a q,r→{a} s→{a}
s = r s’→{a}
a = d a”’→{w}

3 t = s t’→{a}
*e = a x’,y’→{x,y,z,w} z’,w’→{x,y,z,w}

Table 3: Parallel analysis using three threads (12 steps): Iterations 1, 2, 3 require 4, 2, 3 steps
respectively and each merge requires 1 step

T Stmt Itr 1 Merge 1 Itr 2 Merge 2 Itr 3 Merge 3 Itr 4
1 q = p q’→{a}

e = a e’→{x} e’→{y,z,w}
2 r = q a→{y,z,w}, r’→{a} e→{y,z,w} y,z,w→{x,y,z,w}

a = c a”→{z} e→{x}, x→{x,y,z,w} s,t→{a}
e = *a q→{a} r→{a}

3 s = r
t = s s’,t’→{a}
a = d a”’→{w}

4 *e = a x’→{x,y,z,w} y’,z’,w’→{x,y,z,w}
a = b a’→{y}

Table 4: Parallel analysis using four threads (9 steps): Iterations 1, 2, 3 require 2, 1, 3 steps respec-
tively and each merge requires 1 step

threads requires another iteration to propagate. In general, our multi-copy par-
allel analysis requires upto 30% more number of iterations over its sequential
counterpart. However, by utilizing more cores and extracting more parallelism
by making copies, the overall parallel analysis time gets much smaller.

Observe from Table 3 that our parallel analysis requires 12 steps (or time-
units) to reach the fixed-point (4 for Iteration 1, 2 for Iteration 2 and 3 for
Iteration 3). Since merge operation for multiple pointers is done in parallel, we
add one step for each merge operation. If we increase the number of threads
to four, our analysis computes the same fixed-point in 9 steps (Table 4: 2 for
Iteration 1, 1 for Iteration 2, 3 for Iteration 3 and 3 for the merge operations). If
we further increase the number of threads to five, our analysis can compute the
fixed-point in 8 steps (Table 5: 1 for Iteration 1, 1 for Iteration 2, 3 for Iteration 3
and 3 for the merge operations). Recall from Section 2 that the sequential version
required at least 12 steps to reach the fixed-point and the naive parallel version
required 9 steps. This illustrates the unique ability of our method to extract
more and more fine-grained parallelism from a seemingly sequential component
of a program and improving the resource usage of multiple cores.

Note also that replication of points-to information is not transparent to the
threads. Each thread simply deals with its own copy whenever it modifies data.
A thread does not need to know about other threads or the number of copies
of the points-to information it accesses in the system. This helps in keeping
the multithreaded code simple and greatly eases the code understanding. We



T Stmt Itr 1 Merge 1 Itr 2 Merge 2 Itr 3 Merge 3 Itr 4
1 e = a e’→{x} e’→{y,z,w}
2 q = p q’→{a}
3 r = q a→{y,z,w}, r’→{a} e→{y,z,w} y,z,w→{x,y,z,w}

a = c a”→{z} e→{x}, x→{x,y,z,w} s,t→{a}
e = *a q→{a} r→{a}

4 s = r
t = s s’,t’→{a}
a = d a”’→{w}

5 *e = a x’→{x,y,z,w} y’,z’,w’→{x,y,z,w}
a = b a’→{y}

Table 5: Parallel analysis using five threads (8 steps): Iterations 1, 2, 3 require 1, 1, 3 steps respec-
tively and each merge requires 1 step

would like to emphasize that this property is an artifact of the monotonicity and
unorderedness of flow-insensitive analysis.

4 Parallel Points-to Analysis Algorithm

In this section we discuss our parallel points-to analysis algorithm in more de-
tail. Next, we discuss key optimizations which improve overall parallelism of the
analysis.

Each analyzer thread runs Algorithm 2. The scheduler (parent) thread com-
municates with the analyzer threads using global variablesmystatei. Each thread
runs an indefinite loop until fixed-point (Lines 1–33). The fixed-point is deter-
mined by the parent thread during merging operations (Line 5). When a thread
is scheduled with an input set of constraints, it analyzes each constraint and de-
pending upon the type of the constraint, it creates local copies of the write-sets
and updates the points-to information locally. Note that the local copies are not
erased at the end of an iteration and therefore get automatically cached for the
further iterations by the thread. As more points-to information is computed, ad-
ditional local copies of variables are created by the thread. Lines 13–15 process a
load constraint (p = *q), The for-loop at Lines 22–24 process a store constraint
(*p = q) and Line 29 process a copy constraint (p = q). After processing all the
input constraint, Thread i updates its state in global variable mystatei.

The parent thread spawns analyzer threads, waits for them to complete an
iteration each, merges their local copies of points-to sets with the master copy
in parallel and checks if the fixed-point is reached. Although not shown in the
Algorithm, accesses to the global variables (fixed-point and mystatei) are pro-
tected using locks. Since these accesses occur infrequently (once per thread per
iteration), these do not affect the analysis performance in any significant manner.

4.1 Load Balancing

Replication allows an arbitrary distribution of constraints to threads. However,
to achieve good performance, proper load-balancing of work is necessary. Un-
fortunately, the amount of points-to information propagated from one pointer
to another differs significantly across pointers and across iterations. Therefore,



Algorithm 2 Points-to analysis by thread i.

Require: thread id i, set Ci of points-to constraints
1: while true do

2: while mystatei = I do not have work do

3: ;
4: end while

5: if fixed-point reached then

6: break;
7: end if

8: for each constraint c ∈ Ci do

9: if c is a load constraint p = *q then

10: if p is not copied locally then

11: make a local copy p’ of p
12: end if

13: for each v ∈ points-to set of q do

14: points-to set(p’) ∪= points-to set(v)
15: end for

16: else if c is a store constraint *p = q then

17: for each v ∈ points-to set(p) do
18: if v is not copied locally then

19: make a local copy v’ of v
20: end if

21: end for

22: for each v ∈ points-to set(p) do
23: points-to set(v’) ∪= points-to set(q)
24: end for

25: else if c is a copy constraint p = q then

26: if p is not copied locally then

27: make a local copy p’ of p
28: end if

29: points-to set(p’) ∪= points-to set(q)
30: end if

31: end for

32: mystatei = Another iteration done
33: end while

a static constraint partitioning, which assigns a constraint evaluation to a fixed
thread throughout the analysis, achieves only a limited success. On the other ex-
treme, re-calculating the partitions for a perfect load-balance makes the analysis
slower than no load-balancing at all! Therefore, we employ a greedy, incremental
approach, which achieves an approximately load-balanced threads at a much re-
duced cost. Our algorithm first distributes copy and load constraints to threads
in an even (round-robin) manner, since both kinds of constraints have a single-
ton write-set (see Table 2). It then makes a single pass over the (costly) store
constraints to distribute those to threads again in an even manner. Recall that
store constraints may update the points-to sets of multiple pointers. Each thread
also maintains a single number indicating its load (amount of work), based on



the constraints assigned. In each iteration, as a constraint evaluation results
in new points-to information, each thread updates its load-indicator, keeping
track of how much information each constraint changed in that iteration. If the
new load-indicator is more than its value in the previous iteration by a threshold
(pre-determined based on the number of constraints and threads), the thread or-

phans a few (fixed at 5 in our experiments) constraints that added the maximum
points-to information and adds those to a shared worklist. Other threads, at the
end of each iteration, check this worklist and adopt a few constraints if their
load-indicator is less than the threshold. Higher value of the threshold results
in less number of accesses to the shared worklist with reduced load-balancing,
whereas lowering the threshold results in improved load-balancing but more
communication (via the worklist) across threads. We experimented with several
values for the threshold and the optimal value differs considerably across appli-
cations. We found that a threshold set to approximately 7 – 10% of the number
of variables achieves a good trade-off for our benchmarks. Note that checking for
overload is a (thread-)local strategy, which avoids costly thread-communication
overhead. The strategy works reasonably well in practice because the amount
of new points-to information added by a constraint in each iteration can be
predicted based on that in the previous iteration [22].

4.2 Parallel Online Cycle Elimination

Inclusion-based points-to analysis is generally represented using a constraint
graph G wherein a node represents a pointer and a directed edge from node
n1 to node n2 represents the inclusion relationship points-to set(n1) ⊆ points-to
set(n2). The points-to information is propagated across the edges. Load and store
constraints add more and more edges to G as the analysis progresses generating
more opportunities for points-to information propagation. Accumulation of more
points-to information at the nodes may result in more edges being added to G.
This process is repeated until a fixed-point. Cycles may occur in G at any stage
during the analysis. A cycle in G happens due to inter-dependent variables. In
terms of RW sets, a cycle indicates a chain c1, c2, ..., cn of constraints such that
write-set(c1) ∩ read-set(c2) 6= φ, write-set(c2) ∩ read-set(c3) 6= φ, ..., write-
set(cn−1) ∩ read-set(cn) 6= φ and write-set(cn) ∩ read-set(c1) 6= φ. For instance,
a = b and b = a indicates a cycle. An important property of the pointers in
a cycle is that all of them (eventually) have the same points-to information.
Therefore, to reduce unnecessary propagations, cycles are collapsed. Detecting
and collapsing cycles is vital for a scalable inclusion-based points-to analysis [9].
We use Tarjan’s algorithm to find strongly connected components (SCC) of a
directed graph [29] to detect cycles in the constraint graph.

Cycle elimination involves replacing the nodes in the cycle by a representative
node with its points-to information as a union of the points-to information from
all the replaced nodes. Further, the incoming edges to and the outgoing edges
from the replaced nodes need to be updated to be to and from the representative
node respectively. Our algorithm collapses disjoint cycles in parallel. We reuse the



same threads as for solving constraints to collapse cycles, since cycle detection
and collapsing is done when no threads are solving any constraints.

It is possible for two threads collapsing disjoint cycles to update the incom-
ing edges from the same node, potentially resulting in a conflict. However, this
happens infrequently and therefore, we use locking over the nodes to be updated
while collapsing cycles.

In order to get maximum benefit out of cycle detection, one needs to carefully
tune the cycle detection frequency [12]. We check for cycles once per iteration.

We observed that the advantage of cycle detection is high during only the
initial few iterations of the analysis and it gradually reduces as the analysis
progresses. Towards the end of the analysis, the cost of cycle detection outweighs
its benefits and therefore, we perform cycle detection only upto certain number
of initial iterations of the analysis.

4.3 Reducing the Number of Copies

In this section we discuss optimizations that reduce the number of copies of
points-to sets across threads. Reducing the number of copies also reduces the
number of iterations to reach the fixed-point.

It is unnecessary to make a copy of a variable’s points-to set when there
is a single writer thread. We detect this situation by maintaining the number
of writer threads for each variable and using directly the master copy when no
more than one thread writes to the variable. For instance, in the example shown
in Table 3, the constraints q = p, r = q, s = r, t = s and *e = a directly update
the master copy of the variables in the write-sets.

Our analysis also takes advantage of difference propagation [14] for improving
efficiency. Difference propagation involves keeping track of the difference between
points-to information of the nodes forming an edge. This helps in propagating
only the additional new information across the edge. Our analysis does not initi-
ate a merge operation if the difference between the points-to information of the
local copy and the master copy is nil.

While the soundness of our replication-based analysis is oblivious to the way
points-to constraints are distributed across threads in each iteration of the anal-
ysis, we use a fixed partitioning across all iterations to improve its performance.
This helps us cache certain points-to information locally with the thread, updat-
ing it using difference propagation with the master only when some other thread
has written to it. Using a fixed constraint partitioning also helps each thread
make local decisions on the constraint evaluation.

4.4 Limited Scheduling

The amount of new points-to information computed is high in the initial itera-
tions and gradually reduces as the analysis progresses. In fact, towards the end
of the analysis, only a few constraints add more points-to information. There-
fore, our method restricts parallel analysis to a limited number of iterations. The



Algorithm 3 Context-sensitive analysis.

Require: Function f, callchain cc, constraints C, variable set V
1: for all statements s ∈ f do

2: if s is of the form p = alloc() then
3: if inrecursion == false then

4: V = V ∪ (p, cc)
5: end if

6: else if s is of the form non-recursive call fnr then

7: cc.add(fnr)
8: add copy constraints to C for actual and formal arguments
9: call Algorithm 3 with parameters fnr, cc, C
10: add copy constraints to C for return value of fnr and ℓ-value in s

11: cc.remove()
12: else if s is of the form recursive call fnr then

13: inrecursion = true
14: C-cycle = {}
15: repeat

16: for all functions fc ∈ cyclic callchain do

17: call Algorithm 3 with parameters fc, cc, C-cycle
18: end for

19: until no new constraints are added to C-cycle
20: inrecursion = false
21: C = C ∪ C-cycle
22: else if s is an address-of, copy, load, store statement then
23: c = constraint(s, cc)
24: C = C ∪ c

25: end if

26: end for

decision of when to change from parallel to sequential analysis is taken based
on the amount of new points-to information Pi computed in an iteration i. As
soon as it falls below 10% of Pi−1 computed in iteration i−1, our method starts
evaluating constraints sequentially.

5 Context-Sensitive Analysis

We extend Algorithm 2 for context-sensitivity using an invocation graph based
approach [8]. The approach readily disallows non-realizable interprocedural ex-
ecution paths. The context-sensitive algorithm starts from function main and
maintains a stack of function invocations, similar to the runtime. Thus, a re-

turn from a function always matches the function invocation at the top of the
stack. We handle recursion, which can introduce potentially unbounded number
of contexts, by iterating over the cyclic call-chain and computing a fixed-point
of the points-to tuples. Our analysis is field-insensitive, i.e., we assume that any
reference to a field inside a structure is to the whole structure. We do not model
setjmp-longjmp instructions. Our algorithm handles function pointers similar



to [8] by gradually refining the target functions. The context-sensitive version is
outlined in recursive Algorithm 3.

The algorithm takes four parameters: the function f to be processed, its call-
ing context cc, the set of constraints C to be generated and the set of variables V
to be created. The analysis first adds(g, {}) to V for each global variable g where
{} denotes an empty context (not shown in the algorithm). It then makes the
first call to the algorithm with parameters main, {main}, C={}, V. The proce-
dure processes all the statements in the function and generates context-sensitive
points-to constraints in C. C is later evaluated using Algorithm 2. Lines 2–5 in Al-
gorithm 3 process memory allocation and create a new variable on encountering
an alloc statement outside recursion. Lines 6–11 handle a non-recursive call. It
first adds the callee to the callchain and then maps the actual arguments to the
formal arguments. The algorithm recursively calls itself in Line 9 to process the
invocation graph of the callee. The callee is analyzed the same way and the set
of constraints C keeps getting updated. On the callee function’s return, its return
value is mapped to the ℓ-value in the call statement. Finally, the calling context
is updated by removing the callee. A recursive call is handled in Lines 12–21 by
iterating over the cyclic call chain and computing a fixed-point of constraints in
C-cycle. Note that the recursive call to Algorithm 3 in Line 17 uses the same
callchain. The fixed-point over the constraints C-cycle generated in the cyclic
call graph is then merged with C in Line 21. The corresponding context-sensitive
constraints for address-of, copy, load and store statements are added in Lines 22–
25. A context-sensitive constraint contains variables in a particular context. The
two sets, C and V are finally passed on to Algorithm 2 for solving. The reason for
designing the analysis as a two step process (generating constraints and solving
them), rather than interleaving the two tasks, is to have a common constraint
solving phase (with minor modifications). Thus, Algorithm 2 is used for both
context-insensitive and context-sensitive analysis.

Making the analysis context-sensitive increases the number of (context-wise)
variables and reduces the sizes of read-write sets for constraints. Thus, making
the analysis context-sensitive reduces the number of conflicts across constraints,
and in turn, the cost of merging. This helps a context-sensitive analysis achieve
a better speed-up over the context-insensitive version.

6 Experimental Evaluation

We evaluate the effectiveness of our approach using 16 SPEC C/C++ bench-
marks and five large open source programs, namely httpd, sendmail, ghostscript,

gdb and wine-server. The benchmark characteristics are given in Table 6. All
programs are run on an 8-core Intel Xeon E5440 with 2.83 GHz clock, 16 GB
RAM running Debian GNU/Linux 5.0.

6.1 Context-insensitive Analysis

Analysis Time. Table 7 shows the speedup obtained using different number of
threads. Column SEQ indicates the absolute sequential analysis time in seconds.



Benchmark KLOC # Total # Pointer # Func
Inst Inst

176.gcc 222.185 328,425 119,384 1,829
253.perlbmk 81.442 143,848 52,924 1,067
254.gap 71.367 118,715 39,484 877
255.vortex 67.216 75,458 16,114 963
177.mesa 59.255 96,919 26,076 1,040
186.crafty 20.657 28,743 3,467 136
300.twolf 20.461 49,507 15,820 215
175.vpr 17.731 25,851 6,575 228
252.eon 17.679 126,866 43,617 1,723
188.ammp 13.486 26,199 6,516 211
197.parser 11.394 35,814 11,872 356
164.gzip 8.618 8,434 991 90
256.bzip2 4.650 4,832 759 90
181.mcf 2.414 2,969 1,080 42
183.equake 1.515 3,029 985 40
179.art 1.272 1,977 386 43
httpd 125.877 220,552 104,962 2,339
sendmail 113.264 171,413 57,424 1,005
ghostscript 438.204 906,398 488,998 6,991
gdb 474.591 576,624 362,171 7,127
wine-server 178.592 110,785 66,501 2,105

Table 6: Benchmark characteristics

This base analysis is inclusion-based points-to analysis with offline variable sub-
stitution [26] and online cycle elimination [9] implemented. Both the sequential
and the parallel implementations use sparse bitmaps to store points-to informa-
tion. Columns titled 1, 2, 4, 6, 8 indicate the speedup obtained over the sequential
version using the said number of threads.

The average speedup as a geometric mean is 3.001 on 8 cores. The best
speedup of 4.119 is obtained for perlbmk. Our parallel version takes 10% more
time than SEQ for a single thread. However, all the benchmarks we experimented
with perform better than SEQ for two (and more) threads.

We compare our results with the parallel points-to analysis built using Ga-
lois system [20]1. Figure 1 shows the average speedups over the base sequential
versions. The Galois system obtains an average speedup of 2.314 on the set of
benchmarks using 8 cores. Our implementation performs consistently better for
any number of threads. It should be emphasized that the parallel points-to anal-
ysis in Galois uses speculative parallelism which can rollback an activity if a
conflict is detected. Our method uses multiple copies of points-to sets and re-
sults in no conflicts across threads. It does not incur any rollback overheads.
Therefore, it is suited even for a non-speculative execution. We believe that it
is possible to improve Galois speedup by taking advantage of the monotonicity
and unordered nature of flow-insensitive points-to analysis.

Memory. Table 7 shows the memory requirements (in MB) of SEQ, our paral-
lel algorithm PARALLEL with 8 cores and the Galois system with 8 cores for
each benchmark. On an average, PARALLEL requires 12% more memory than
SEQ. This is due to a few additional copies of points-to sets stored locally by

1 Downloaded from http://users.ices.utexas.edu/∼marioml/hardekopfPointsTo.html.



Benchmark SEQ Speedup Memory (MB)
Time(s) 1 2 4 6 8 SEQ PARALLEL GALOIS

gcc 6.546 0.80 1.02 2.39 2.96 3.84 83 95 179
perlbmk 2.345 0.92 1.18 2.14 3.03 4.11 100 135 188
vortex 1.445 0.96 1.04 1.97 2.46 3.59 16 24 28
eon 2.446 0.92 1.29 2.41 3.31 4.00 248 314 346
parser 0.889 0.98 1.11 1.74 2.43 3.23 4 7 7
gap 2.777 0.96 1.17 1.69 2.19 2.99 8 13 14
vpr 0.601 0.89 1.18 1.59 2.00 2.46 2 3 3
crafty 0.595 0.99 1.25 1.83 2.38 2.87 1 2 3
mesa 2.045 0.98 1.18 1.77 2.75 3.58 14 16 23
ammp 0.575 0.95 1.03 1.48 1.98 2.68 3 4 5
twolf 0.686 0.97 1.05 1.68 1.99 2.44 4 4 6
gzip 0.456 0.87 1.06 1.72 2.24 2.89 1 1 2
bzip2 0.396 0.90 1.02 1.49 1.80 2.33 1 1 1
mcf 0.382 0.88 1.00 1.36 1.79 2.17 1 1 2
equake 0.436 0.82 1.04 1.47 1.75 2.01 1 1 1
art 0.485 0.84 1.00 1.60 2.10 2.44 1 1 1

httpd 4.447 0.85 1.18 2.13 2.80 3.68 674 705 1028
sendmail 3.311 0.86 1.18 2.07 2.68 3.43 256 279 511
ghostscript 84.497 0.88 1.19 2.22 2.89 3.71 2871 3193 5719
gdb 174.355 0.89 1.09 1.68 2.31 3.01 3556 3976 5362
wine-server 4.452 0.89 1.08 1.78 2.22 2.77 185 210 336

average 14.008 0.91 1.11 1.80 2.35 3.00 382 428 655

Table 7: Context-insensitive analysis: Analysis time, Speedup and Memory

each thread. However, GALOIS requires 53% more memory than PARALLEL
and 71% more than SEQ. The authors of GALOIS [20] attribute the high mem-
ory consumption to Java implementation. Our C++ implementation performs
optimizations to reduce the number of copies of points-to sets across threads.

6.2 Context-sensitive Analysis

Analysis time. The context-sensitive version of our parallel analysis performs
similar to its context-insensitive counterpart. The speedup results are detailed
in Table 8. In comparison to the context-insensitive results, since variables now
have smaller points-to sets, the number of potential conflicts across threads re-
duces and the analysis requires less number of local copies and merging. Our
parallel analysis achieves a speedup of 3.4x on an 8-core machine. Considering
that points-to analysis is an irregular application with dynamic constraint graph,
we believe, this speedup is quite remarkable.

Memory. Memory requirement of our context-sensitive parallel points-to analy-
sis is shown in Table 8. Once again, PARALLEL-CS requires 14% more memory
than SEQ-CS.



Fig. 1: Speedup comparison between our replication-based approach and Galois system

In summary, our parallel points-to analysis exploits more fine-grained paral-
lelism from programs and promises a scalable approach to parallelizing mono-
tonic, unordered analyses.

7 Related Work

Replication-based Techniques. Replication-based techniques are prevalent
in distributed systems, but their main focus is reliability [11, 16]. Bal et al.
[2] propose partial replication based techniques for speeding up parallelization.
Their approach is based on replicating an object based on its read-write access
pattern. While being applicable to parallel points-to analysis, their approach
does not exploit the monotonicity property of flow-insensitive analysis, which is
key to the arbitrary constraint partitioning employed by our algorithm.

Ziegler et al. [32] propose a data-flow analysis algorithm to uncover the par-
allelization opportunities for array replication and their temporary privatization.
Their algorithm does not take advantage of any monotonic computation.

A few optimistic thread executions involve limited forms of data replication.
For instance, in the Grace system [3] used for eliminating concurrency errors,
threads execute optimistically and write their updates speculatively but locally.
Burckhardt et al. [5] propose isolation types which can be used by threads to read
and modify local copies of shared data. Our approach exploits the monotonic
and unordered nature of flow-insensitive analysis to eliminate contention.

Prabhu et al. [25] develop an algorithm called EigenCFA for accelerating
0-CFA with a GPU. Similar to our analysis, EigenCFA takes advantage of the
monotonicity of 0-CFA to allow stale reads. In their analysis, the same row in
the representation matrix may have multiple copies of the same lambda term if
they try to add the same information at the same time. They claim that this is a
“rare inefficiency”. In contrast, our analysis heavily depends upon this property
and exploits it to improve parallelism. Further, the focus of their work is to run



Benchmark SEQ-CS Speedup Memory (MB)
Time(s) 1 2 4 6 8 SEQ-CS PARALLEL-CS

gcc 329.463 0.87 1.12 2.69 3.41 4.28 2859 3419
perlbmk 143.448 0.96 1.29 2.47 3.21 4.03 2133 2628
vortex 91.283 0.98 1.22 2.52 3.22 3.81 1857 2014
eon 93.495 0.96 1.31 2.72 3.41 3.98 1276 1443
parser 35.445 0.99 1.32 2.66 3.33 3.86 478 549
gap 128.478 0.98 1.27 2.50 3.13 3.77 457 514
vpr 29.456 0.93 1.22 2.69 3.08 3.64 735 770
crafty 29.337 0.99 1.28 2.51 2.96 3.46 672 736
mesa 89.388 0.98 1.27 2.01 2.68 3.32 894 949
ammp 34.236 0.96 1.10 1.89 2.77 3.15 427 447
twolf 41.499 0.98 1.10 2.10 2.69 2.90 624 696
gzip 25.234 0.92 1.08 1.74 2.56 2.98 514 641
bzip2 23.322 0.92 1.06 1.85 2.43 2.68 633 686
mcf 22.395 0.91 1.02 1.88 2.60 3.00 403 470
equake 24.306 0.90 1.08 1.96 2.75 3.23 546 610
art 26.459 0.92 1.04 1.92 2.43 2.84 597 656

httpd 224.534 0.89 1.24 2.47 3.01 3.68 991 1131
sendmail 172.743 0.91 1.28 2.58 3.10 3.57 914 1019
ghostscript 4384.238 0.93 1.30 2.66 3.11 3.81 8258 9761
gdb 9338.228 0.93 1.14 2.43 2.99 3.64 5894 6486
wine-server 201.323 0.97 1.16 2.01 2.58 3.10 774 858

average 737.539 0.95 1.19 2.28 2.91 3.44 1521 1737

Table 8: Context-sensitive analysis: Analysis time, Speedup and Memory

the analysis on a GPU whereas our focus is to run it on a multicore.

Sequential Pointer Analysis. The area of sequential points-to analysis is
rich in literature. See [15] for a survey. Most scalable algorithms proposed use
unification [28][10]. Steensgaard[28] proposed an almost linear time single-pass
algorithm that has been shown to scale to millions of lines of programs. However,
a unification based approach is very imprecise. Andersen [1] proposed inclusion-
based analysis that works on subsumption of points-to sets rather than a bidirec-
tional similarity. An inclusion-based (or subset-based) analysis is more precise
than a unification based analysis. However, it is also costly and has a theoretical
complexity of O(n3). Several techniques [4][14][30] have been proposed to improve
upon the original work by Andersen. [4] extracts similarity across the points-to
sets while [30] exploits similarity across the contexts to make use of the Binary
Decision Diagrams (BDD) to store information in a succinct manner. The idea
of bootstrapping [17] first reduces the problem by partitioning the set of pointers
into disjoint alias sets using a fast and less precise algorithm (e.g., [28]) and later
running more precise analysis on each of the partitions. To address the analysis
cost of a completely context-sensitive analysis, approximate representations were
introduced to trade off precision for scalability. Das [6] proposed one level flow,
Lattner et al. [18] unified contexts, while Nasre et al. [23, 21] hashed contexts to



alleviate the need to store complete context information.

Parallel Pointer Analysis. In contrast to its sequential counterpart, parallel
points-to analysis is still not explored enough. The work on program decom-
position identifies various program components on which different analyses can
be executed in parallel [31, 27]. Bootstrapping [17] uses partitions of aliases to
simulate parallel processing. However, parallelizing is not the main objective of
the work and the parallelism extracted is very coarse. Lojo et al. [20, 19] pro-
posed the first parallel implementation of inclusion-based points-to analysis by
exploiting the constraint graph formulation. Their analysis works on the assump-
tion of speculative parallelism and an activity may be rolled back if a conflict is
detected. In contrast, our work is general and does not require the support of
speculative execution. By making multiple copies of points-to sets, our analysis
strives to obtain more fine-grained parallelism.

A parallel points-to analysis for object oriented programs is proposed by
Edvinsson et al. [7] which deals with different target methods of polymorphic
function calls and independent control-flow branches. Maximum speedup ob-
tained has been shown to be less than 2.0 for a set of Java benchmarks. Our
parallel analysis takes advantage of monotonicity property of a flow-insensitive
analysis to create multiple copies of points-to sets achieving better parallelism.

8 Conclusion

Taking advantage of the multi-core processing requires the analyses themselves
to be parallel. While several enhancements have been proposed for sequential
pointer analysis, enough work is yet to be done for parallel points-to analysis.
By exploiting the monotonicity of flow-insensitive points-to analysis, we pro-
posed a replication-based parallel inclusion-based points-to analysis that extracts
more fine-grained parallelism from seemingly sequential programs. We showed
the effectiveness of our approach over 16 SPEC 2000 benchmarks and five large
open source programs. Our parallel context-insensitive (context-sensitive) anal-
ysis achieves a speedup of 3.0x (3.4x) on an 8-core machine and illustrates a
promising approach to parallelizing a monotonic, unordered data-flow analysis.
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