Midterm Exam
CS6013

27-Sep-2013

Read the questions carefully. State all your assumption clearly. There are
total 4 questions * 15 marks = 60 marks. For questions that have sub-parts,
the division for the sub-parts are mentioned in square brackets.

1. Semantic Analysis Present a scheme to type check and generate IR for
programs written in an extension of Minijava that admits type casting. If the
cast fails the program aborts, which is equivalent to executing the instruction
error in the IR.

class A{ int f1; }
class C { }
class B extends A{
boolean f1;
void foo(){
A al, a2;
B bl, b2;
C ci1;

al = new B(Q);
bl = al; // type error

bl = (B) al; // runtime check, succeeds

a2 = new AQ;
b2 = (B) a2 // runtime check, error

cl = (C) al; // type error

al.f1 = ((A) new B()).f1l; // type checks
bl.f1 = ((B) a2).f1l; // type checks, runtime error
} 3}

Use your scheme to generate intermediate code for the above example (gen-
erate intermediate code by ignoring all the statements that result in type error.
Use an imperative intermediate code, something like minilR). Be liberal with
your comments to help us understand your translation.



2. Control flow analysis Write an algorithm to construct a Depth-First-
Spanning-Tree (DFST) for a control flow graph (CFG) [2].

An edge (m,n) in the input CFG is called a retreating edge if n is an ancestor
of m in the DFST. A flow graph is reducible, if it can be transformed into a
single node, by repeated application of T1/T2 transformations. An alternative
definition of a flow graph being reducible is that all its retreating edges in any
DFST are also back edges. Prove that a flow graph is reducible iff when we
remove all the back edges, the resulting flow graph is acyclic [6.5]. Prove that
both the definitions of reducibility are equivalent [6.5].

3. Dead Code Elimination A variable definition is dead if it is not used on
any path from the definition point to the exit node. An instruction is dead if it
assigns to only dead variables. Write an algorithm to eliminate dead code from
the given program.

Assume: two data structures UD (for use-def) and DU (for def-use) are avail-
able for each variable. For a variable x, UD[z][i] returns the set of definitions of
x that reach the instruction i that uses x; if instruction ¢ does not use x then
UD[x][i] returns null. For a variable z, DU[z][¢] returns the set of uses of x that
use the value defined at the instruction 4; if instruction 7 does not define x then
DU[z][¢] returns null.

4. Copy Propagation Present an algorithm to do global copy propagation [10].
Given an assignment x := y, the copy propagation optimization, replaces each
later use of x with y, as long as there is no redefinition of x or y in between.
Assume a language that allows global variables (but no locals), allows function
calls that take no arguments, but may return a value.

Apply your algorithm on the code given below [4].

int a, b, ¢, d, e, f, g, h, i; bar(){

main(){ f=a+c;
// read a, b g = e;
c =a+ b; a=g+d;
d = c; if (a <c) Ao
e =d *x d; h=g+1;
i = bar(); fbar();
j=1ix*1i; }
print (a,b,c,d,e,f,g,h,i,j); else {
+ f=d-g;
if (f > a)
fbar();
fbar(O{ else
b=g * a; c = 2;
if (h < ) foo(); }
} return f; }

As an example, copy propagation should replace e=d*d with e=cxc, and j=i*i
with j=f*f among others. Discuss two uses of copy propagation [1].



