
Final Exam, CS6848, IIT Madras

06-May-2014

Read all the instructions and questions carefully. You can make any reason-
able assumptions that you think are necessary; state them clearly. There are
total six questions totaling 72 marks (including 12 bonus marks). Each twelve
mark question will approximately take 30 minutes. For questions that have
sub-parts, the division for the sub-parts are mentioned in square brackets.

Leave the first page empty. Start each question on a new page. Think about
the question before you start writing and write briefly. The answer for any
question (including all the sub-parts) should NOT cross more than
two pages. If the answer is spanning more than two pages, we will ignore
the spill-over text. If you scratch/cross some part of the answer, you can get
compensation space from the next page.

1. [12] Flow analysis I For the following code generate the flow constraints
using 0-CFA and solve the constraints.

class A1 implements I {

I x = new A2();

public I m(I y) {

return x.m(y);

} } // end of A1

class A2 extends A1 {

public I m(I y) {

x.m(y).m(this);

} } // end of A2

... new A2().m(new A1())

2. [12] Flow analysis II We will assume a simplified procedural Java sub-
set: a program consists of a set of classes, each class is a subtype of the
Thread class (directly or indirectly) and consists of exactly one method
(run), and at most one field. The run method takes no argument and
consists of zero or more statements. Allowed statements: variable dec-
laration, sequence, method call, object allocation, and print statements.
Method overloading is not allowed. Goal: Write an algorithm that takes
as input two statement labels and returns true if two statements may run
in parallel. Apply your algorithm on the following code to confirm the
results.
Hint: Use a variation of flow analysis to identify which method may be
called.

1



L1: class A1 extends Thread {

L2: A1 f2 = new A2();

L3: void run() {

Thread t1, t2;

L4: t1 = f2.start();

L5: t2 = new A3().start();

L6: t1.join(); t2.join();

L7: } } // end of A1

// main function

... new A1().start().join();

// Example May Happen in Parallel information:

// L17 may run in parallel with L4, L5, L11, L12, L17, L18

// L12 may run in parallel with L5, L17, L18

L8: class A2 extends A1 {

L9: A1 f1 = new A1();

L10: void run() {

L11: f1.start().join();

L12: S1; // serial code

L13: } L14:} // end of A2

L15:class A3 extends A2 {

L16: void run() {

L17: S2; // serial code.

L18: S3; // serial code.

... }} // end of A3

Notes:

• In Java x.start(), where the type of x is a subtype of Thread class,
starts executing the run method of the thread in parallel with the
current thread.

• x.join(), where the type of x is a subtype of Thread class, makes the
current thread wait for thread x to finish executing (its run method).

3. [12] Language extension Consider an extension to C (with no pointer
arithmetic), where the arguments may be passed by name (aka. Lazy
evaluation) – let us call this CLazy. Give a mechanism to translate a
program in such a language to normal C. The translation should ensure
that if the input CLazy program terminates with eager evaluation and
outputs a value v, then the value output by the translated program would
match v.

int foo() {

int x = 5;

printf ("%d ",bar (5, x + fbar1(5, x)));

printf ("%d ",bar (inf(), x + fbar1(inf(), x)));

}

int bar(int x, int y) {

printf ("%d ",y); return y;

}

int fbar1(int x, int y) {

if (y < 0) return x; return y - 1;

}

int inf() { while (1); return 0;}

The above program should print : 9 9 9 9.

4. [4 + 4 + 4] Axiomatic semantics I
i) A CS6848 student when asked to derive the universal pre and post condi-
tions, answered that the universal pre-condition is true and the universal
post-condition is false. Is the answer correct? Prove it.

2



Prove that the following code performs the division of positive numbers.
After the end Y has the quotient and X has the reminder. ii) State the
post-condition and the pre-condition. iii) Derive the Hoare-triples at each
program point to prove the above stated code property.
X ::= a;

Y ::= 0;

WHILE b <= X DO

X ::= X - b;

Y ::= Y + 1

END;

5. [12] Axiomatic semantics II Prove that the following code stores the
value of x - y in the variable X.
X ::= x;

Y ::= y;

WHILE Y 6= 0 DO

X ::= X - 1;

Y ::= Y - 1

END;

6. [6 + 6] Answer any of the two questions.

(a) Communicating Sequential Processes: Using primitives similar to
that used in the CSP paper, write a program to simulate Conway’s
game of life. Take a grid of N×N cells, each of which is either alive or
dead. In each generation, each cell interacts with its neighbor to find
their state and changes its own state based on the following rules:

i. (no friends) A live cell with one or fewer live neighbors dies.

ii. (healthy) A live cell with two or more live neighbors continues
to live to the next generation.

iii. (population explosion) A live cell with more than three live
neighbor dies.

iv. (resurrection) A dead cell with exactly three live neighbors be-
comes live.

(b) Eiffel: Give a scheme to transform Eiffel code to C. Focus mainly on
the following three constructs: require, ensure, and retry.

(c) Proof Carrying Code: Compare and contrast the approach of PCC
Vs Typed Assembly language.

(d) Briefly describe (with an example) how flow analysis can help in
improving the precision of automatic predicate abstraction.

(e) Axiomatic semantics: Derive a loop invariant for the following code;
our goal: to prove that the code computes the factorial function.
X ::= x

Y ::= 1

WHILE X <> 0 DO

Y ::= Y * X;

X ::= X - 1

END

3


