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Academic Formalities

There will be five assignments - total 40 marks.
One paper presentation - 10 marks.
Midterm = 20 marks, Final = 30 marks.
Extra marks
Attendance requirement – as per institute norms.
Plagiarism – as per institute norms.

Contact (Anytime) :
Email: nvk@cse.iitm.ac.in, Skype (nvkrishna77), Office: BSB 352.
TA: Suyash Gupta, Email: suyash@cse
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What, When and Why of POPL

What:
A programming language is an artificial language designed to
communicate instructions to a machine, particularly a computer.
Fundamental principles in the design, definition, analysis, and
implementation of programming languages and programming
systems.

When
Early 19th century - programmable looms.
1930s - Mathematical abstractions (such as lambda calculus and
Turing machines).

Why Study
It is good to know the food you eat.

Helps appreciate the languages.
Helps learn techniques to analyze programs.

Experts in POPL are in great demand (both in academia and in
industry).
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Mutual expectations

For the class to be a mutually learning experience:
What will be required from the students?

An open mind to learn.
Curiosity to know the basics.
Explore their own thought process.
Help each other to learn and appreciate the concepts.
Honesty and hard work.
Leave the fear of marks/grades.

What are the students expectations?
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Course outline

Introduction: tools.
Program semantics: semantics and equivalence.
Type systems: type soundness, lambda calculus
Type inference: inference algorithms
Continuation passing style and closure conversion.
Exceptions
Partial evaluation.
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The Java Compiler Compiler (JavaCC)

Can be thought of as “Lex and Yacc for Java.”
It is based on LL(k) rather than LALR(1).
Grammars are written in EBNF.
The Java Compiler Compiler transforms an EBNF grammar into
an LL(k) parser.
TheJavaCC grammar can have embedded action code writtenin
Java, just like a Yacc grammar can have embedded action code
written in C.
The lookahead can be changed by writing LOOKAHEAD(. . . ).
The whole input is given in just one file (not two).
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JavaCC input

One file
header
token specification for lexical analysis
grammar

Example of a token specification:

TOKEN : {
< INTEGER_LITERAL: ( ["1"-"9"] (["0"-"9"])* | "0" ) >

}

Example of a production:

void StatementListReturn() :
{}
{

( Statement() )* "return" Expression() ";"
}
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Generating a parser with JavaCC

javacc fortran.jj // generates a parser with a specified name
javac Main.java // Main.java contains a call of the parser
java Main < prog.f // parses the program prog.f
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Why have lexer at all? Why not do everything using the parser?
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The Visitor Pattern

The visitor design pattern is a way of separating an algorithm from
an object structure on which it operates.
Implication: the ability to add new operations to existing object
structures without modifying those structures.
Interesting in object oriented programming and software
engineering.

Requirements
The set of classes must be fixed in advance, and
each class must have an accept method.
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Motivate Visitor by summing an integer list

interface List {}

class Nil implements List {}

class Cons implements List {
int head;
List tail;

}
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1/3 approach: instanceof and type casts

List l; // The List-object
int sum = 0;
boolean proceed = true;
while (proceed) {

if (l instanceof Nil)
proceed = false;

else if (l instanceof Cons) {
sum = sum + ((Cons) l).head;
l = ((Cons) l).tail;
// Notice the two type casts!

}
}

Adv: The code is written without touching the classes Nil and Cons.
Drawback: The code constantly uses explicit type cast and
instanceof operations.
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2/3 approach: dedicated methods

The first approach is NOT object-oriented!
Classical method to access parts of an object: dedicated methods
which both access and act on the subobjects.

interface List {
int sum();

}

We can now compute the sum of all components of a given
List-object ll by writing ll.sum().
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2/3 approach: dedicated methods (contd)

class Nil implements List {
public int sum() {

return 0;
}

}
class Cons implements List {

int head;
List tail;
public int sum() {

return head + tail.sum();
}

}

Adv: The type casts and instanceof operations have disappeared,
and the code can be written in a systematic way.
Drawback: For each new operation, new dedicated methods
have to be written, and all classes must be recompiled.
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3/3 approach: Visitor pattern

The Idea:
Divide the code into an object structure and a Visitor.
Insert an accept method in each class. Each accept method takes
a Visitor as argument.
A Visitor contains a visit method for each class (overloading!) A
visit method for a class C takes an argument of type C.

interface List {
void accept(Visitor v);

}
interface Visitor {

void visit(Nil x);
void visit(Cons x);

}
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3/3 approach: Visitor pattern

The purpose of the accept methods is to invoke the visit method in
the Visitor which can handle the current object.

class Nil implements List {
public void accept(Visitor v) {

v.visit(this);
}

}
class Cons implements List {

int head;
List tail;
public void accept(Visitor v) {

v.visit(this);
}

}
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3/3 approach: Visitor pattern

The control flow goes back and forth between the visit methods in
the Visitor and the accept methods in the object structure.

class SumVisitor implements Visitor {
int sum = 0;
public void visit(Nil x) {}
public void visit(Cons x) {

sum = sum + x.head;
x.tail.accept(this);

}
}
.....
SumVisitor sv = new SumVisitor();
l.accept(sv);
System.out.println(sv.sum);

The visit methods describe both
1) actions, and 2) access of subobjects.
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3/3 approach: Visitor pattern control flow

interface List {
void accept(Visitor v); }

interface Visitor {
void visit(Nil x);
void visit(Cons x); }

class Nil implements List {
public void accept(Visitor v) {

v.visit(this); } }
class Cons implements List {
int head;
List tail;
public void accept(Visitor v) {

v.visit(this); } }

class SumVisitor implements Visitor {
int sum = 0;
public void visit(Nil x) {}
public void visit(Cons x) {

sum = sum + x.head;
x.tail.accept(this); } }

.....
SumVisitor sv = new SumVisitor();
l.accept(sv);
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Comparison

# detail Frequent type casts Frequent recompilation
1. Instanceof + type-cast Yes No
2. Dedicated methods No Yes
3. Visitor pattern No No

The Visitor pattern combines the advantages of the two other
approaches.

Advantage of Visitors: New methods without recompilation!

Requirement for using Visitors: All classes must have an accept
method.

Tools that use the Visitor pattern:

JJTree (from Sun Microsystems), the Java Tree Builder (from Purdue
University), both frontends for The JavaCC from Sun Microsystems.

ANTLR generates default visitors for its parse trees.
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Visitors: Summary

Visitor makes adding new operations easy. Simply write a new
visitor.
A visitor gathers related operations. It also separates unrelated
ones.
Adding new classes to the object structure is hard. Key
consideration: are you most likely to change the algorithm applied
over an object structure, or are you most like to change the
classes of objects that make up the structure.
Visitors can accumulate state.
Visitor can break encapsulation. Visitor’s approach assumes that
the interface of the data structure classes is powerful enough to let
visitors do their job. As a result, the pattern often forces you to
provide public operations that access internal state, which may
compromise its encapsulation.
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(Useless?) Assignment 1

Write the three versions of code corresponding to each of the
above discussed approaches.
Populate the lists with ‘N’ number of elements.
Print the Sum of elements.
Convince yourself about the programmability with Visitor pattern.
See which of the three approaches is more efficient?
Vary ‘N’ - 10; 100; 1000; 100,0000; 10,00,000.
Make a table and report the numbers.
Write a paragraph or two reasoning about the performance.
Mention any thoughts on performance improvement.

The best “useless” answer(s) will be recognized.
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Java Tree builder

The Java Tree Builder (JTB) has been developed here at Purdue
(my ex group).
JTB is a frontend for The Java Compiler Compiler.
JTB supports the building of syntax trees which can be traversed
using visitors. Q: Why is it interesting?
JTB transforms a bare JavaCC grammar into three components:

a JavaCC grammar with embedded Java code for building a syntax
tree;
one class for every form of syntax tree node; and
a default visitor which can do a depth-first traversal of a syntax tree.
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The Java Tree Builder
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Invoking JTB

jtb fortran.jj // generates jtb.out.jj
javacc jtb.out.jj // generates a parser with a specified name
javac Main.java // Main.java contains a call of the parser

and calls to visitors
java Main < prog.f // builds a syntax tree for prog.f, and

executes the visitors
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(simplified) Example
For example, consider the Java production

void Assignment() : {}
{PrimaryExpression() AssignmentOperator() Expression()}

JTB produces:

Assignment Assignment () :
{ PrimaryExpression n0;
AssignmentOperator n1;
Expression n2; {} }

{ n0=PrimaryExpression()
n1=AssignmentOperator()
n2=Expression()
{ return new Assignment(n0,n1,n2); }

}

Notice that the production returns a syntax tree represented as an
Assignment object.
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(simplified) Example

JTB produces a syntax-tree-node class for Assignment:

public class Assignment implements Node {
PrimaryExpression f0; AssignmentOperator f1;
Expression f2;
public Assignment(PrimaryExpression n0,

AssignmentOperator n1,
Expression n2)

{ f0 = n0; f1 = n1; f2 = n2; }
public void accept(visitor.Visitor v) {

v.visit(this);
} }

Notice the accept method; it invokes the method visit for
Assignment in the default visitor.
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(simplified) Example

The default visitor looks like this:

public class DepthFirstVisitor implements Visitor {
...
//
// f0 -> PrimaryExpression()
// f1 -> AssignmentOperator()
// f2 -> Expression()
//
public void visit(Assignment n) {

n.f0.accept(this);
n.f1.accept(this);
n.f2.accept(this);

} }

Notice the body of the method which visits each of the three
subtrees of the Assignment node.
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(simplified) Example (multiple visitors in action)

Here is an example of a program which operates on syntax trees for Java
programs. The program prints the right-hand side of every assignment. The
entire program is six lines:

public class VprintAssignRHS extends DepthFirstVisitor {
void visit(Assignment n) {

VPrettyPrinter v = new VPrettyPrinter();
n.f2.accept(v); v.out.println();
n.f2.accept(this);

} }

When this visitor is passed to the root of the syntax tree, the depth-first
traversal will begin, and when Assignment nodes are reached, the method
visit in VprintAssignRHS is executed.

VPrettyPrinter is a visitor that pretty prints Java programs.

JTB is bootstrapped.
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Scheme Language

An interpreted language.
A sample session: (the shell evaluates expressions)

$ mzscheme
Welcome to Racket v5.2.
> 3
3
> (+ 1 3)
4
> ’(a b c)
(a b c)
> (define x 3)
> x 3
> (+ x 1)
4

> (define l ’(a b c))
> l
(a b c)
> (define u ’(+ x 1))
> u
(+ x 1)
> (define u (+ x 1))
> x
3
> u
4
>
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Procedures
Creating procedures with lambda: (lambda (x) body)

> (lambda (x) (+ x 1))
#<procedure>
> ((lambda (x) (+ x 1)) 4)
5
> (define mysucc (lambda (x) (+ x 1)))
> (mysucc 4)
5
> (define myplus (lambda (x y) (+ x y)))
> (myplus 3 4)
7
> ((lambda (x y) (+ x y)) 3 4)
7

Procedures can take other procedures as arguments:

> ((lambda (f x) (f x 3)) myplus 5)
8

Q: How are C pointers different than a lambda?
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Procedures (contd)

Procedures can return other procedures; this is called Currying:

> (define twice
(lambda (f)

(lambda (x)
(f (f x)))))

> (define add2 (twice (lambda (x) (+ x 1))))

> (add2 5)

> 7
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Kinds of data

Basic values = Symbols ∪ Numbers ∪ Strings ∪ Lists
Symbols: sequence of letters and digits starting with a letter. The
sequence can also include other symbols, such as -,$,=,*,/,?, .
Numbers: integers, etc.
Strings: ”this is a string”
Lists:

1 the empty list is a list ()
2 a sequence (s1, · · ·sn) where each si is a value (either a symbol,

number, string, or list)
3 nothing is a list unless it can be shown to be a list by rules (1) and

(2).

This is an inductive definition, which will play an important part in
our reasoning. We will often solve problems (e.g., write
procedures on lists) by following this inductive definition.
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List Processing

Basic operations on lists:
car: if l is (s1 · · ·sn), then (car l) is s1.

The car of the empty list is undefined.

> (define l ’(a b c))
> (car l)
> a

cdr: if l is (s1 s2 · · · sn), then (cdr l) is (s2 · · · sn).
The cdr of the empty list is undefined.

> (cdr l)
> (b c)

Combining car and cdr:
> (car (cdr l))
> b
> (cdr (cdr l))
> (c)

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 37 / 55

*

Building lists

cons: if v is the value s, and l is the list (s1 · · ·sn), then (cons s
l) is the list (v s1 · · · sn).
cons builds a list whose car is s and whose cdr is l.
(car (cons s l)) = v
(cdr (cons s l)) = l

cons : value * list -> list
car : list -> value
cdr : list -> list

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 38 / 55

*

Genesis of the names

Lisp was originally implemented on the IBM 704 computer, in the
late 1950s.
The 704 hardware had special support for splitting a 36-bit
machine word into four parts:

1 an ”address part” of fifteen bits,
2 a ”decrement part” of fifteen bits,
3 a ”prefix part” of three bits,
4 a ”tag part” of three bits.

Precursors to Lisp included functions:
1 car = ”Contents of the Address part of Register number”,
2 cdr = ”Contents of the Decrement part of Register number”,
3 cpr = ”Contents of the Prefix part of Register number”,
4 ctr = ”Contents of the Tag part of Register number”.

The alternate first and last are sometimes more preferred.
But car and cdr have some advantages: short and
compositions.

cadr = car cdr, caadr = car car cdr, cddr = cdr cdr
cons = constructs memory objects.
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Boolean related

Literals:

#t, #f

Predicates:
(number? s) (number? 3)
(symbol? s) (symbol? ’a)
(string? s) (string? "Hello")
(null? s) (null? ’())
(pair? s) (pair? ’(a . b))
(eq? s1 s2) -- works on symbols (eq? ’(a b) ’(a b))

(eq? ’a ’a)
(eq? "a" "a")

(equal? s1 s2) -- recursive (equal? "a" "a")
(= n1 n2) -- works on numbers (= 2 2)
(zero? n) (zero? x)
(> n1 n2) (> 3 2)

Conditional:

(if bool e1 e2)
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Recursive Procedures

Say we want to write the power function: e(n,x) = xn.
e(n,x) = x×e(n−1,x)
At each stage, we used the fact that we have the problem solved
for smaller n — Induction.
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Recursive procedures

(define e
(lambda (n x)

(if (zero? n)
1
(* x

(e (- n 1) x)))))

Why does this work? Let’s prove it works for any n, by induction on n:
1 It surely works for n=0.
2 Now assume (for the moment) that it works when n = k. Then it

works when n=k+1. Why? Because (e n x) = (* x (e k
x)), and we know e works when its first argument is k. So it gives
the right answer when its first argument is k + 1.
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Structural Induction

The Moral: If we can reduce the problem to a smaller
subproblem, then we can call the procedure itself (“recursively”) to
solve the smaller subproblem.
Then, as we call the procedure, we ask it to work on smaller and
smaller subproblems, so eventually we will ask it about something
that it can solve directly (eg n=0, the basis step), and then it will
terminate successfully.
Principle of structural induction: If you always recur on smaller
problems, then your procedure is sure to work.
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Recursive procedures

(define fact
(lambda (n)

(if (zero? n) 1 (* n (fact (- n 1))))))

(fact 4) = (* 4 (fact 3))
= (* 4 (* 3 (fact 2)))
= (* 4 (* 3 (* 2 (fact 1))))
= (* 4 (* 3 (* 2 (* 1 (fact 0)))))
= (* 4 (* 3 (* 2 (* 1 1))))
= (* 4 (* 3 (* 2 1)))
= (* 4 (* 3 2))
= (* 4 6)
= 24

Each call of fact is made with a promise that the value returned will be
multiplied by the value of n at the time of the call; and

thus fact is invoked in larger and larger control contexts as the
calculation proceeds.
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Loops

Java
int fact(int n) {

int a=1;
while (n!=0) {

a=n*a;
n=n-1;

}
return a;

}

Scheme
(define fact-iter

(lambda (n)
(fact-iter-acc n 1)))

(define fact-iter-acc
(lambda (n a)
(if (zero? n)

a
(fact-iter-acc (- n 1)

(* n a)))))

Q: Is it not a recursive function?
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Trace - loop

(fact-iter 4)
= (fact-iter-acc 4 1)
= (fact-iter-acc 3 4)
= (fact-iter-acc 2 12)
= (fact-iter-acc 1 24)
= (fact-iter-acc 0 24)
= 24

fact-iter-acc is always invoked in the same context (in this
case, no context at all).
When fact-iter-acc calls itself, it does so at the ”tail end”
of a call to fact- iter-acc. That is, no promise is made to do
anything with the returned value other than return it as the result
of the call to fact-iter-acc.
Thus each step in the derivation above has the form
(fact-iter-acc n a).
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Many way switch - cond

(cond
(test1 exp1)
(test2 exp2)
...
(else exp_n))
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Let

When we need local names, we use the special form let:

(let ((var1 val1)
(var2 val2)
...)
exp)

(let ((x 3)
(y (+ x 4)))

(* x y))

(let ((x 5))
(let ((f (+ x 3))

(x 4))
(+ x f)))
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Limitations of let

Scheme
(define fact-iter

(lambda (n)
(fact-iter-acc n 1)))

(define fact-iter-acc
(lambda (n a)
(if (zero? n) a
(fact-iter-acc (- n 1) (* n a)))))

Can we write a local recursive procedure?

(define fact-iter
(lambda (n)
(let ((fact-iter-acc

(lambda (n a)
(if (zero? n)

a
(fact-iter-acc (- n 1) (* n a))))))

(fact-iter-acc n 1))))
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Local recursive procedures

The scope of fact-iter-acc doesn’t include it’s definition. Instead, we can use letrec:

(letrec
((name1 proc1)
(name2 proc2)
...)
body)

letrec creates a set of mutually recursive procedures and makes their names
available in the body. So we can write:

(define fact-iter
(lambda (n)
(letrec ((fact-iter-acc

(lambda (n a)
(if (zero? n) a

(fact-iter-acc (- n 1)
(* n a))

))))
(fact-iter-acc n 1))))
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Revise the scope of let and letrec

(let (var1 exp1) (var2 exp2) S)

var1 is visible inside S.
var2 is visible inside S.

(letrec (var1 exp1) (var2 exp2) S)

var1 is visible in exp1, exp2, and S.
var2 is visible in exp1, exp2, and S.

One requirement: no reference be made to var1 and var2 during the
evaluation of exp1, and exp2.
This requirement is easily met if exp1 and/or exp2 are lambda
expressions - reference to the variables var1 and var2 are evaluated
only only when the resulting procedure is invoked.
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Examples with let and letrec

(letrec ((x (+ x 1))) x) -- undefined.
(letrec ((x y) (y 1)) x) -- undefined
(letrec ((x (lambda () (+ y 1))) (y 3)) (x)) -- 4
(let ((x 3)) (let ((y (+ x 4))) (* x y)))

6≡

(let ((x 3) (y (+ x 4))) (* x y))
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Argument sequencing

Arguments are evaluated before procedure bodies.

In ((lambda (x y z) body) exp1 exp2 exp3)

exp1, exp2, and exp3 are guaranteed to be evaluated before body,
but we don’t know in what order exp1, exp2, and exp3 are going to
be evaluated, but they will all be evaluated before body.
This is precisely the same as
(let ((x exp1) (y exp2) (z exp3)) body)

In both cases, we evaluate exp1, exp2, and exp3, and then we
evaluate body in an environment in which x, y, and z are bound to
the values of exp1, exp2, and exp3.
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Practise problems (with and without using letrec)

Find the ’n’ the element in a given list. (Input: a list and n. Output:
error or the n’th element)
symbol-only? – checks if a given list contains only symbols.
List→ boolean
member?: (List, element)→ boolean
remove-first: List→ List
replace-first: (List, elem)→ List
remove-first-occurrence: (List, elem)→ List
remove-all-occurrences: (List, elem)→ List
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Things to Do

Make sure you have a working account.
Start brushing on Java and Scheme.
Review Java development tools.
Check out the course webpage:
http://www.cse.iitm.ac.in/˜krishna/cs6848/, (for the
assignment 1 - due two weeks).
Scheme test.
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