
Final Exam

CS3300
Maximum marks = 60, Time: 3hrs

21-Nov-2014

Read all the instructions and questions carefully. You can make any rea-
sonable assumptions that you think are necessary; but state them clearly. There are
total six questions, each 10 marks worth. You will need approximately 30 minutes
for answering an 10 marks question (plan your time accordingly). For questions with
sub-parts, the division for the sub-parts are given in square brackets.

You will get an answer sheet with 12 pages (if you get a answer sheet with fewer
pages then ask for a replacement sheet). Leave the first page empty. Start each ques-
tion on a new page. Think about the question before you start writing and write
briefly. The answer for any question (including all the sub-parts) should
NOT cross more than two pages. If the answer for any question is spanning more
than two pages, we will strictly ignore the spill-over text. If you scratch/cross some
part of the answer, you can use space from the next page.

1. [10] IR Generation:
Recall the semantic actions discussed in
the class to generate IR for booleans,
conditional statements and loops. Write
similar rules to translate statements gen-
erated by the grammar shown on the right
hand side [7]. Note I: repeat S1 until(B)

keeps repeating S1 (≥ 1 times), till B is
true. Note II: ^ is the xor operator.

Use your stated rules to generate IR
for the code shown in the right hand
side [3].

S -> if (B) S1

S -> repeat S1 until (B);

B -> B1 ^ B2

B -> true

B -> false

B -> Identifier

S -> ;

repeat

if (x ^ false) ;

until (false ^ y);

2. [10] Control flow:
For the code shown in the right hand
side, identify the basic blocks [2] and draw
the control flow graph [2]. For the first
statement in each of the basic blocks,
compute the dominator information [3].
Identify the backedges [2], and the loops
(set of basic blocks and edges) [1].

void foo(){

x = 1; y = n;

L1: x = x + 1;

if (cond) goto L2;

y = y + 1;

L2: if !cond1 goto L3

x = bar(x);

cond1 = cond1 && x < 10

goto L2;

L3: x = x - y;

if (cond2) goto L1;

print (x, y);

}
3. [10] Low level optimizations:
Show two unique example (pattern) codes where you can apply the following opti-
mizations: i) load-store optimizations, ii) Eliminating useless branch instructions, iii)
instruction scheduling to reduce data hazards, iv) instruction scheduling to reduce
control hazards, v) instruction scheduling to reduce structural hazards. [2+2+2+2+2]

1



4. [10] Register Allocation:
Compute the liveness information [2], in-
terference graph [2], and do register alloca-
tion using Kempe’s heuristic [1.5], assum-
ing that the machine has only three regis-
ters (plus two special registers for spill in-
structions), and show the code after reg-
ister allocation (temporaries replaced with
registers, and insertion of spill code, wher-
ever necessary) [1.5]. Re-do the register al-
location assuming that there are no special
registers for spilling [3].
Note I: Load V1 R1; loads the value of vari-
able V1 into the register R1. Note II: Store
R1 V1; store R1 to the variable V1.

entry

a = r1; b = r2; c=r3; d = c
e = a
g = c + 1
a < d;

b = b + 1
d = 2 * d

b < 10?

print (b,d,e,g);
c = c / 2;
print (c);

exit

N

Y

5. [10] Optimizations:
Optimize the code in the right hand side
in a step by step manner, using machine
independent optimizations. At each step,
indicate the optimization applied and the
resulting code (or at least the difference).

void foo(double z, int a, int A[10]){

int n = 4;

double x = n * 4;

while (z < x) {

print (A[z]);

y = a * n;

p = c;

q = p + A[z]

p = c + q;

z = z + 1;

}

printf (p, y);

goto L1;

a = a + 1;

L1: n = n - 2;

if (n > 4) goto L2;

print a/n;

L2: print (n);

}
6. [10] Translating Exceptions: Translate the following code to MiniJava. Note:
MiniJava does not support exceptions.

class A{

public void foo(){

try {

if (cond) { e1 = new E1(); }

else { e1 = new E2(); }

throw e1;

} catch (E2 e){ fbar2(e); }

}

public void bar(){

try { foo(); }

catch (E1 e){ fbar(e); }

} } /* end of class A */

2


