
Midterm Exam

CS6013

14-Mar-2015

Read all the instructions and questions carefully. You can make any rea-
sonable assumptions that you think are necessary; but state them clearly. There are
total four questions, totalling 40 marks. You will need approximately 30 minutes
for answering a 10 marks question (plan your time accordingly). For questions with
sub-parts, the division for the sub-parts are given in square brackets.

You will get an answer sheet with 12 pages (if you get a answer sheet with fewer
pages then ask for a replacement sheet). Leave the first page empty. Start each ques-
tion on a new page. Think about the question before you start writing and write
briefly. The answer for any 12 mark question (including all the sub-parts)
should NOT cross more than three pages. If the answer for any 12 mark ques-
tion is spanning more than three pages, we will strictly ignore the spill-over text. If
you scratch/cross some part of the answer, you can use space from the next page.

1. [12] Control Flow Analysis and Copy propagation
Given an assignment x = y, the copy propagation optimization, replaces each lat-
ter use of x with y, as long as there is no redefinition of x or y in between. Design
an intra-procedural copy propagation algorithm based on structural analysis, by
defining the flow functions (for pass one) and propagation functions (pass two)
[4.5+4.5]. Assume that the function consists of a sequence of statements and
we only admit the following types of statements: copy statements (of the form x
= y), computation statements (of the form x = y op z), conditional statements
(of the form ’if (x) S’), and while loops (of the form ’while (x) S’). Apply your
algorithm on the following code and show a trace [3].

entry

b = a
x = y
c = 4 * b
c > b

d = b + 2
x = d - 1

e = a + b + x

exit

Y

N

1



2. [12] Dependence analysis: Answer the queries for the given sample code:
for (i = 1; i <= n; i+=1)

for (j = 1; j <= i; j+=1)

for (k = 1; k <= j; k+=1) {

Sl: A[i,j,k] = A[i-1,j-1,k-1] + A[i-1,j,k]

S2: B[i,j-1,k] = A[2*i+1,j-1,k-1] * 2.0

S3: A[3*i-2,j,k+1] = B[i,j,k] + 1.0

}

(a) Draw the iteration space for the loop nest. [1.5]

(b) Draw the execution order relationships between the 3 labeled stmts. [1.5]

(c) Write the dependence relations (flow, anti and output) between the S1, S2
and S3. [1.5]

(d) Compute the distance vectors, and direction vectors. [3]

(e) For the different references to A and B, use the GCD test to check if/when
there exists any same iteration or different iteration dependence. [4.5]

3. [4] SSA: How to eliminating SSA φ nodes, in a semantics preserving way?
Illustrate using examples.

4. [12] Scheduling: Design a scheme to schedule a given a basic block of instruc-
tions, to improve the performance, by reducing the wait time [9]. Assume:

(a) Each instruction I has at most two operands, returned by I.useOps.

(b) Each instruction I has a def, returned by I.defOp.

(c) Each instruction I has an associated execution time (returned byXTime(I))
that gives the number of cycles I takes to produce the value in I.defOp.

(d) If an instruction i1 uses an operand o1 that is produced by another in-
struction i0, then i1 may have to wait till o1 is produced. For i1 to not
wait for any additional cycles, i1 must be at a distance of XTime(i0) − 1
or more from i0.

(e) In the worst case, the time to execute the basic block is given by
∑

i
XTime(i).

(f) Your input would be a sequence of instructions. And the output of your
algorithm is expected to be a sequence of instructions, such that the total
execution time is reduced.

(g) An instruction can be issued in each cycle.

Example: Say each instruction has an execT ime of two cycles, except a memory
instruction. For a memory instruction execT ime is 4 cycles. Consider the BB:

I1. r1 = r2 * r3

I2. r4 = r2 + r1

I3. r5 = r4[0] // memory op

I4. r6 = r3 - r2;

I5. r7 = r6 / r1

I6. r8 = r7 + 1

The given BB will take – 6 × 1 cycle per instruction + delay for I2 (1) + delay
for I3 (1) + delay for I5 (1) + delay for I6 (1) + delay after I6(1) = 11 cycles.
The BB: I1, I4, I2, I5, I3, I6 will take 6 × 1 cycle per instruction + delay due
to I3 after I6 has finished (1) + delay after I6 (1) = 8.

Apply your algorithm on this example (I1, I2, I3, I4, I5, I6) and show a trace. [3]

2


