CS1100
Computational Engineering

Control Structures

Course Material - SD, SB, PSK, NSN, DK, TAG ~ CS&E, lIT M

Perfect Number Detection

* Perfect number — sum of proper divisors adds up to
the number

* Pseudocode:
— Read a number, A
— Set the sum of divisors to 1
— If A is divisible by 2, Add 2 to the sum of divisors
— If A is divisible by 3, Add 3 to the sum of divisors

— If A is divisible by A/2, Add A/2 to the sum of divisors

— If A is equal to the sum of divisors, A is a perfect
SD, PSK, M‘bfg{f CS&E, IITM

Refining the Pseudocode

* Read a number, A

* Set the sum of divisors to 1
* SetBto2
* While B is less than or equal to A/2

— If A is divisible by B, Add B to the sum of divisors
— Increment B by 1

+ If A is equal to the sum of divisors, A is a perfect
number

SD, PSK, NSN, DK, TAG — CS&E, IIT M

Perfect Number Detection

main (){

int d=2, n, sum=1;
d<n will also do, but would
scanf(“%d”, &1’1); do unnecessary work
while (d <= (n/2)) {
if (n%d == 0)
sum += d;
d++;
}
if (sum == n) printf (“%d is perfect\n”, n);
else printf (“%d is not perfect\n”, n);

Exercise: Modify to find
51}, PSK, NSN, DK, TAG ~ CS&E, IIT M
the first n perfect numbers

Jfor loops

» Counter controlled repetitions needs
— Initial value for the counter
— Modification of counter: i = i+1or i= i1, or any other
arithmetic expression based on the problem, and
— Final value for the counter
* for repetition structure provides for the
programmer to specify all these
* Any statement written using for can be rewritten
using while

+ Use of for helps make the program error free

SD, PSK, NSN, DK, TAG — CS&E, ITM 5

The for construct

* General form:

Sor (exprl; expr2; expr3) <statement>
+ Semantics:
— evaluate “exprl” - initialization operation(s)
— repeat - evaluate expression “expr2” and
— If “expr2” is true
* execute “statement” and “expr3”

— Else stop and exit the loop

SD, PSK, NSN, DK, TAG — CS&E, IIT M 6

Example Code with the while Construct
scanf(*“%d”, &n);
value = 1;

printf (“current value is %d \n”, value);
counter = 0;
while (counter <=n){
value = 2 * value;
printf (“current value is %d \n”, value);
counter = counter + 1;

}

SD, PSK, NSN, DK, TAG - CS&E, ITM 7

Example Code with the for Construct
scanf(*“%d”, &n);
value = 1;

for (count = 0; count <=n; count=count+1){
if (count == 0) printf(“value is %d \n”,1);
else{
value = 2 * value;
printf(value is %d \n”, value);

}

s r@bserve:-asmistake in the earlier program is goné

Computing the Sum of the First 20 Odd Numbers

. .. Set j to the first odd number
nt 7, j, sum, S =0;

i : Loop control variable
for (=T, =T 7<=20; i = i+1){
N

Termination condition

sum +=;
/> " Increment sum by the it odd number
jt= 2 Set j to the next odd number

SD, PSK, NSN, DK, TAG — CS&E, IIT M 9

Calculating Compound Interest a=p(l+r)y
#include<stdio.h>
#include<math.h>

m‘"n() { String constants used to align
int yr; heading and output data in a table

double amt, principal = 1000.0, rate = .05;
printf(“%4s%10s\n”, “year”, “Amount”);
Jor (yr=1; yr <=10; yrt+) {
amt = principal * pow(1.0 + rate, yr);
printf(“%4d%10.2f\n”, yr, amt);

SD, PS}(, NSN, DK, TAG - CS&E, ITM

The do-while construct

* for and while check termination condition before
each iteration of the loop body

* Sometimes - execute the statement and check for
condition

* General form:
do {<statement>} while (expr);
» Semantics:

— execute the statement and check expr
— if expr is true, re-execute statement else exit

SD, PSK, NSN, DK, TAG — CS&E, ITM

An Example
#include<stdio.h>
main()
{
int count = 1;
do{
printf(“%d\n”, count);
} while(++count <= 10);
return 0;

}

SD, PSK, NSN, DK, TAG — CS&E, IIT M

Find the Square Root of a Number

* How do we find the square root of a given
number N?

* We need to find the positive root of the
polynomial x* — N

e Solve: x¥2-N=10

SD, PSK, NSN, DK, TAG — CS&E, IITM 13

Newton—Raphson Method

= 32—
PN T Y
i . - Tp W
f (I") - (1n+1 _In) — tangent line

/" the derivative of the function f'
By simple algebra we can derive

S
f(@a)

X, =x,— (x,7—N)/2x,

Tpt1 = Tn

= (x,2 + N)2x, = (x, + Nix,)2 N

SD, PSK, NSN, DK, TAG - CS&E, IITM http://en.wikipedia.org/wiki/Newton's_method

Square Root of a Number

intn;

float prevGuess, currGuess, error, sqRoot;

scanf(“%d”, &n);
currGuess = (float) n/2 ; error = 0.0001;
do{

prevGuess = currGuess;
currGuess = (prevGuess + n/prevGuess)/2;
}while(fabs(prevGuess — currGuess)>error);
sqRoot = currGuess;
printf(“%f\n”, sqRoot);

SD, PSK, NSN, DK, TAG - CS&E, IT M 15

Repetition Structures

false do-while
Structure

SD, PSK, NSN, DK, TAG - CS&E, ITM

Structured Programming

* To produce programs that are
— easier to develop, understand, test, modify
— easier to get correctness proof

* Rules /
— Begin with the “simplest flowchart”

— Any action box can be replaced by two action boxes in
sequence

— Any action box can be replaced by any elementary structures
(sequence, if, if/else, switch, while, do-while or for)

— Rules 2 and 3 can be applied as many times as required and in
any order

SD, PSK, NSN, DK, TAG - CS&E, IIT M 17

Break and Continue

* break — breaks out of the innermost loop or
switch statement in which it occurs

* continue — starts the next iteration of the loop in
which it occurs

SD, PSK, NSN, DK, TAG - CS&E, IT M 18

An Example

#include<stdio.h>
main (){
int i;
for (i=1;1<10;i=i+1){
ifli==25)
break; //continue;
printf(“%4d”, i);

}

SD, PSK, NSN, DK, TAG — CS&E, IITM 19

Find a Smallest Positive Number

#include<stdio.h>
main (){
int n=0, smallNum = 10000;
printf(“Enter Numbers (in the range 0 to 9999):\n”);
scanf(“%d”, &n);
while (n >= 0){
if(smallNum > n) smallNum = ;
scanf(“%d”,&n);
}
printf(“Smallest number is %d\n”,smallNum);

sx}. PSK, NSN, DK, TAG ~ CS&E, IIT M 20

Exercises

» Write a program that reads in the entries of a 3x3
matrix, and prints it out in the form of a matrix.
The entries could be floating point too.

» Write a program that reads in orders of two
matrices and decides whether two such matrices
can be multiplied. Print out the decision.

* Write a program that reads in two matrices, and
multiplies them. Your output should be the two
matrices and the resulting product matrix.

SD, PSK, NSN, DK, TAG - CS&E, IT M 21

