
CS3300 - Compiler Design
Intro to Semantic Analysis

V. Krishna Nandivada

IIT Madras

*

Acknowledgement

Copyright c©2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 2 / 22

*

Semantic Processing

The compilation process is driven by the syntactic structure of the
program as discovered by the parser
Semantic routines:

interpret meaning of the program based on its syntactic structure
two purposes:

finish analysis by deriving context-sensitive information (e.g. type
checking)
begin synthesis by generating the IR or target code

associated with individual productions of a context free grammar
or subtrees of a syntax tree

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 3 / 22

*

Alternatives for semantic processing

one-pass analysis and synthesis
one-pass compiler plus peephole
one-pass analysis & IR synthesis + code generation pass
multipass analysis (e.g. gcc)
multipass synthesis (e.g. gcc)
language-independent and retargetable (e.g. gcc) compilers

Our focus in the assignments: One-pass analysis & IR synthesis +
multipass analysis + multipass synthesis.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 4 / 22



*

Goal - Type checking (MiniJava)

We need generate type information.
For fields, variables, expressions, functions.

Need to enforce types:
Assignments, function calls, expressions.

We need to remember the type information and recall them
as/where required – symbol table.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 5 / 22

*

Symbol tables

For compile-time efficiency, compilers use a symbol table:
associates lexical names (symbols) with their attributes

What items should be entered?
variable names
defined constants
procedure and function names
literal constants and strings
source text labels
compiler-generated temporaries (we’ll get there)

A symbol table is a compile-time structure
Separate table for structure layouts (types) (includes field offsets and lengths)
May need to preserve list of locals for the debugger

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 6 / 22

*

Symbol table information

What kind of information might the compiler need?
textual name
data type
dimension information (for aggregates)
declaring procedure
lexical level of declaration
storage class (base address)
offset in storage
if record, pointer to structure table
if parameter, by-reference or by-value?
can it be aliased? to what other names?
number and type of arguments to functions
. . .

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 7 / 22

*

Storage classes of variables

During code generation, each variable is assigned an address
(addressing method), approrpriate to its storage class.

A local variable is not assigned a fixed machine address (or
relative to the base of a module) – rather a stack location that is
accessed by an offest from a register whose value does not point
to the same location, each time the procedure is invoked. Why is it
interesting?
Four major storage classes: global, stack, stack static, registers

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 8 / 22



*

Symbol table organization

How should the table be organized?
Linear List

O(n) probes per lookup
easy to expand — no fixed size
one allocation per insertion

Ordered Linear List
O(log2 n) probes per lookup using binary search
insertion is expensive (to reorganize list)

Binary Tree
O(n) probes per lookup — unbalanced
O(log2 n) probes per lookup — balanced
easy to expand — no fixed size
one allocation per insertion

Hash Table
O(1) probes per lookup — on average
expansion costs vary with specific scheme

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 9 / 22

*

Nested scopes: block-structured symbol tables

What information is needed?
when asking about a name, want most recent declaration
declaration may be from current scope or outer scope
innermost scope overrides outer scope declarations

Key point: new declarations occur only in current scope
What operations do we need?

void put (Symbol key, Object value)
bind key to value
Object get(Symbol key)
return value bound to key
void beginScope()
remember current state of table
void endScope()
close current scope and restore table to state at most recent open
beginScope

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 10 / 22

*

Nested scopes: complications

Fields and records:
give each record type its own symbol table

or assign record numbers to qualify field names in table
with R do 〈stmt〉:

all IDs in 〈stmt〉 are treated first as R.id
separate record tables:
chain R’s scope ahead of outer scopes
record numbers:

open new scope, copy entries with R’s record number
or chain record numbers: search using these first

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 11 / 22

*

Nested scopes: complications (cont.)

Implicit declarations:
labels:
declare and define name (in Pascal accessible only within
enclosing scope)
Ada/Modula-3/Tiger FOR loop:
loop index has type of range specifier

Overloading:
link alternatives (check no clashes), choose based on context

Forward references:
bind symbol only after all possible definitions⇒ multiple passes

Other complications:
packages, modules, interfaces — IMPORT, EXPORT

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 12 / 22



*

Attribute information

Attributes are internal representation of declarations
Symbol table associates names with attributes
Names may have different attributes depending on their meaning:

variables: type, procedure level, frame offset
types: type descriptor, data size/alignment
constants: type, value
procedures: formals (names/types), result type, block information
(local decls.), frame size

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 13 / 22

*

Type expressions

Type expressions are a textual representation for types:
1 basic types: boolean, char, integer, real, etc.
2 type names
3 constructed types (constructors applied to type expressions):

1 array(I,T) denotes an array of T indexed over I
e.g., array(1 . . .10, integer)

2 products: T1×T2 denotes Cartesian product of type expressions T1
and T2

3 records: fields have names
e.g., record((a× integer),(b× real))

4 pointers: pointer(T) denotes the type “pointer to an object of type T”
5 functions: D→ R denotes the type of a function mapping domain

type D to range type R
e.g., integer× integer→ integer

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 14 / 22

*

Type descriptors

Type descriptors are compile-time structures representing type
expressions
e.g., char× char→ pointer(integer)

!

�

char char

pointer

integer

or

!

�

char

pointer

integer

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 15 / 22

*

Type compatibility

Type checking needs to determine type equivalence
Two approaches:

Name equivalence: each type name is a distinct type
Structural equivalence: two types are equivalent iff. they
have the same structure (after substituting type
expressions for type names)

s≡ t iff. s and t are the same basic types
array(s1,s2)≡ array(t1, t2) iff. s1 ≡ t1 and s2 ≡ t2
s1× s2 ≡ t1× t2 iff. s1 ≡ t1 and s2 ≡ t2
pointer(s)≡ pointer(t) iff. s≡ t
s1→ s2 ≡ t1→ t2 iff. s1 ≡ t1 and s2 ≡ t2

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 16 / 22



*

Type compatibility: example

Consider:
type link = ↑cell;
var next : link;

last : link;
p : ↑cell;
q, r : ↑cell;

Under name equivalence:
next and last have the same type
p, q and r have the same type
p and next have different type

Under structural equivalence all variables have the same type
Ada/Pascal/Modula-2/Tiger are somewhat confusing: they treat distinct
type definitions as distinct types, so p has different type from q and r

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 17 / 22

*

Type compatibility: Pascal name equivalence

Build compile-time structure called a type graph:
each constructor or basic type creates a node
each name creates a leaf (associated with the type’s descriptor)

next last

link = pointer

cell

pointer

p

pointer

q r

Type expressions are equivalent if they are represented by the same
node in the graph

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 18 / 22

*

Type compatibility: recursive types

Consider:
type link = ↑cell;

cell = record
info : integer;
next : link;
end;

We may want to eliminate the names from the type graph
Eliminating name link from type graph for record:

record=cell

�

�

info integer

�

next pointer

cell

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 19 / 22

*

Type compatibility: recursive types

Allowing cycles in the type graph eliminates cell:

record=cell

�

�

info integer

�

next pointer

Think: If structural equivalence was to be used by Java, how to type
check?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 20 / 22



*

Enforcing type checks in MiniJava

Examples
Assignment statements,
If-expression,
Arithmatic expression,
Function call,
Return statement,

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 21 / 22


