
CS3300 - Compiler Design
Liveness analysis and Register allocation

V. Krishna Nandivada

IIT Madras

*

Register allocation

Copyright c© 2014 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 2 / 26

*

Register allocation

errors

IR
machine

code
instruction
selection

register
allocation

Register allocation:
have value in a register when used
limited resources
can effect the instruction choices
can move loads and stores
optimal allocation is difficult
⇒ NP-complete for k ≥ 1 registers

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 3 / 26

*

Liveness analysis

Problem:
IR contains an unbounded number of temporaries
machine has bounded number of registers

Approach:
temporaries with disjoint live ranges can map to same register
if not enough registers then spill some temporaries
(i.e., keep them in memory)

The compiler must perform liveness analysis for each temporary:

It is live if it holds a value that may be needed in future

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 4 / 26



*

Example

a← 0
L1 : b← a+1

c← c+b
a← b×2
if a < N goto L1
return c

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 5 / 26

*

Liveness analysis

Gathering liveness information is a form of data flow analysis operating
over the CFG:

We will treat each statement as a different basic block.
liveness of variables “flows” around the edges of the graph
assignments define a variable, v:

def(v) = set of graph nodes that define v
def[n] = set of variables defined by n

occurrences of v in expressions use it:
use(v) = set of nodes that use v
use[n] = set of variables used in n

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 6 / 26

*

Definitions

v is live on edge e if there is a directed path from e to a use of v
that does not pass through any def(v)
v is live-in at node n if live on any of n’s in-edges
v is live-out at n if live on any of n’s out-edges
v ∈ use[n]⇒ v live-in at n

(For programs with statically established no uninitialized variables)
v live-in at n⇒ v live-out at all m ∈ pred[n]
v live-out at n,v 6∈ def[n]⇒ v live-in at n

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 7 / 26

*

Liveness analysis

Define:

in[n] = variables live-in at n

out[n] = variables live-out at n

Then:

out[n] =
⋃

s∈succ(n)

in[s]

succ[n] = φ ⇒ out[n] = φ

Note:

in[n] ⊇ use[n]
in[n] ⊇ out[n]−def[n]

use[n] and def[n] are constant (independent of control flow)
Now, v ∈ in[n] iff. v ∈ use[n] or v ∈ out[n]−def[n]
Thus, in[n] = use[n]∪ (out[n]−def[n])

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 8 / 26



*

Iterative solution for liveness

N : Set of nodes of CFG;
foreach n ∈ N do

in[n]← φ ;
out[n]← φ ;

end
repeat

foreach n ∈ Nodes do
in′[n]← in[n];
out′[n]← out[n];
in[n]← use[n]∪ (out[n]−def [n]);
out[n]←

⋃
s∈succ[n] in[s] ;

end
until ∀n, in′[n] = in[n]∧out′[n] = out[n] ;

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 9 / 26

*

Notes

should order computation of inner loop to follow the “flow”
liveness flows backward along control-flow arcs, from out to in
nodes can just as easily be basic blocks to reduce CFG size
could do one variable at a time, from uses back to defs, noting
liveness along the way

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 10 / 26

*

Iterative solution for liveness

Complexity: for input program of size N

≤ N nodes in CFG
⇒≤ N variables
⇒ N elements per in/out
⇒ O(N) time per set-union
for loop performs constant number of set operations per node
⇒ O(N2) time for for loop
each iteration of repeat loop can only add to each set
sets can contain at most every variable
⇒ sizes of all in and out sets sum to 2N2,
bounding the number of iterations of the repeat loop

⇒ worst-case complexity of O(N4)

ordering can cut repeat loop down to 2-3 iterations
⇒ O(N) or O(N2) in practice

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 11 / 26

*

Least fixed points

There is often more than one solution for a given dataflow problem
(see example).
Any solution to dataflow equations is a conservative approximation:

v has some later use downstream from n
⇒ v ∈ out(n)
but not the converse

Conservatively assuming a variable is live does not break the program;
just means more registers may be needed.
Assuming a variable is dead when really live will break things.
Many possible solutions but we want the “smallest”: the least fixpoint.
The iterative algorithm computes this least fixpoint.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 12 / 26



*

Register allocation - by Graph coloring

Step 1:
Select target machine instructions assuming infinite registers
(temps).
If a instruction requires a special register – replace that temp with
that register.

Step 2:
Construct an interference graph.
Solve the register allocation problem by coloring the graph.
A graph is said to be colored if each each pair of neighboring nodes
have different colors.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 13 / 26

*

Graph coloring - a simplistic approach

Input: G - the interference graph, K - number of colors
repeat

repeat
Remove a node n and all its edges from G, such that degree of n is
less than K;
Push n onto a stack;

until G has no node with degree less than K;
// G is either empty or all of its nodes have degree
≥ K

if G is not empty then
Take one node m out of G, and mark it for spilling;
Remove all the edges of m from G;

end
until G is empty;
Take one node at a time from the stack and assign a non conflicting color.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 14 / 26

*

Example 1, available colors = 2

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 15 / 26

*

Example 2

We have to spill.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 16 / 26



*

Graph coloring - Kempe’s heuristic

Algorithm dating back to 1879.

Input: G - the interference graph, K - number of colors
repeat

repeat
Remove a node n and all its edges from G, such that degree of n is
less than K;
Push n onto a stack;

until G has no node with degree less than K;
// G is either empty or all of its nodes have degree
≥ K

if G is not empty then
Take one node m out of G.;
push m onto the stack;

end
until G is empty;
Take one node at a time from the stack and assign a non conflicting color (if
possible, else spill).

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 17 / 26

*

Example 2 (revisited)

We don’t have to spill.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 18 / 26

*

Example 3

Don’t have a choice. Have to spill.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 19 / 26

*

Register allocation - Linear scan

Register allocation is expensive.
Many algorithms use heuristics for graph coloring.
Allocation may take time quadratic in the number of live intervals.

Not suitable
Online compilers – need to generate code quickly. e.g. JIT
compilers.
Sacrifice efficient register allocation for compilation speed.

Linear scan register allocation - Massimiliano Poletto and Vivek
Sarkar, ACM TOPLAS 1999

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 20 / 26



*

Linear Scan algorithm

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 21 / 26

*

Example

Say, available registers = 2

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 22 / 26

*

Linear Scan algorithm - analysis

Each live range gets either a register or a spill location.
Note: The number of overlapping intervals changes only at the
start and end points of an interval.
Live intervals are stored in a list that is sorted in order of
increasing start point.
The active list is kept sorted in order of increasing end point. Adv:
need to scan only those intervals (+1 at most) that have to be
removed.
Complexity: O(V) – if number of registers is assumed ot be a
constant. Else? O(V× logR)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 23 / 26

*

Spilling

We need to generate extra instructions to load variables from the
stack and store them back.
The load and store may require registers again:

Naive approach: Keep a separate register (wasteful).
Rewrite the code - by introducing a temporary; rerun the liveness +
ra.
(Note: the new temp has much smaller live range).

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 24 / 26



*

Example: rewrite code

Consider: add t1 t2

Suppose t2 has to be spilled, say to [sp-4].
Invent a new temp t35, and rewrite:
mov t35 [sp-4]
add t1 t35

t35 has a very short live range and less likely to interfere.
Now rerun the algo.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 25 / 26

*

Criteria for spilling

During register allocation, we identify that one of the live ranges from a
given set, has to be spilled. Criteria?

Random! Adv? Disadv?
One with maximum degree
One that has the longest life
One with the shortest life (take advantage of the cache).
One with least cost.

Cost = Dynamic (load cost + store cost)
How to handle loops, conditionals?
Cost of load, store

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 26 / 26


