```
Opening remarks
```


CS6013 - Modern Compilers: Theory and Practise Dependence testing

V. Krishna Nandivada

IIT Madras

Example dependence testing

```
for (i = 1 .. 4) {
```

for (i = 1 .. 4) {
b[i] = a[4*i] + 2.0;
b[i] = a[4*i] + 2.0;
a[2*i+1] = 1.0/i;
a[2*i+1] = 1.0/i;
}
}
for (i = 1 .. 4) {
for (i = 1 .. 4) {
b[i] = a[3*i+5] + 2.0;
b[i] = a[3*i+5] + 2.0;
a[2*i+1] = 1.0/i;
a[2*i+1] = 1.0/i;
}

```
}
```

What have we done so far?

- Compiler overview.
- Scanning and parsing.
- JavaCC, visitors and JTB
- Semantic Analysis - specification, execution, attribute grammars.
- Type checking, Intermediate Representation, Intermediate code generation.
- Control flow analysis, interval analysis, structural analysis
- Data flow analaysis, intra-procedural constant propagation.
- Dependence analysis

Today: Dependence testing

linear Diophantine equation

$$
a 1 * x 1+a 2 * x 2+\cdots a n * x n=c
$$

has an integer solution for $x 1, x 2, .$. , iff
GCD $(a 1, a 2, \cdots a n)$ divides c.

GCD test - intuition

- A simple and sufficient test
- if a loop carried dependency exists between $X[a * i+b]$ and $X[c * i+d]$, then GCD (c, a) must divide $(d-b)$.

GCD Test formula

- Developed by Utpal Bannerjee and Robert Towle (1976).
- Comparatively weak test (Marks too many accesses as dependent).
- If for any one subscript position

$$
G C D\left(\bigcup_{j=1}^{n} \operatorname{Sep}\left(a_{j}, b_{j}, j\right)\right) \neg / \sum_{j=0}^{n}\left(a_{j}-b_{j}\right)
$$

where

- GCD - computes the Greatest common divisor for the set of numbers.
- " $a \neg / b$ " means that a does not divide b.
-

$\operatorname{Sep}(a, b, j)= \begin{cases}\{a-b\} & \text { looking for intra iteration dependence } \\ \{a, b\} & \text { otherwise }\end{cases}$ then the two references to the array x are independent.

- Other words: dependence \Rightarrow GCD divides the sum.

GCD Test Generalization

```
for (it= 1.. hi, )
    for (i2 = 1.. hi ( ) { ... 
    x[\ldots, a a + a coric}+\ldots+\mp@subsup{a}{n}{}*\mp@subsup{i}{n}{},\ldots
    x[\ldots, b
        ... } } }
```

- may be accessed inside loop nest using indices of multiple loops.; Array may be multi-dimensional.
- Dependence present iff, for each subscript position in the equation

$$
a_{0}+\sum_{j=1}^{n} a_{j} * i_{j_{1}}=b_{0}+\sum_{j=1}^{n} b_{j} * i_{j_{2}}
$$

and the following inequalities are satisfied:

$$
\begin{aligned}
& \forall j=1 \cdots n \\
& 1 \leq i_{j_{1}} \leq h i_{j}
\end{aligned}
$$

GCD test for loops with arbitrary bounds

Say the loops are not canonical, but are of the form:

$$
\text { for } i_{j} \leftarrow l o_{j} \text { by } i n c_{j} \text { to } h i_{j}
$$

$$
G C D\left(\bigcup_{j=1}^{n} \operatorname{Sep}\left(a_{j} * i n c_{j}, b_{j} * i n c_{j}, j\right)\right) \neg / a_{0}-b 0+\sum_{j=0}^{n}\left(a_{j}-b_{j}\right) * l o_{j}
$$

- A pair of array references is separable if in each pair of subscript positions, the expressions found are of the form: $a * x+b 1$ and $a * x+b 2$.
- A pair of array references is weakly separable if in each pair of subscript positions, the expressions found are of the form: $a 1 * x+b 1$ and $a 2 * x+b 2$.

If the two array references are separable, then dependence exists if

- $a=0$ and $b 1=b 2$ or
- $(b 1-b 2) / a \leq h i_{j}$

Dependence testing for weakly separable array references

Dependence testing for weakly separable array references (contd)

- For each subscript position, we have equations of the form: $a 1 * y+b 1=a 2 * x+b 2$, or $a 1 * y=a 2 * x+(b 2-b 1)$
- Dependence exists if for a particular value of j has a solution that satisfies inequalities given by the loop bounds of loop j.
- List all such constraints for each reference.
- For any given reference if there is only one equation:
- Say it is given by: $a 1 * y=a 2 * x+(b 2-b 1)$
- One linear equation, two unknowns:

Solution exists iff $G C D(a 1, a 2) \%(b 2-b 1)=0$

- If the set of equations has two members of the form

$$
\begin{aligned}
& a_{11} * y=a 21 * x+(b 21-b 11) \\
& a_{12} * y=a 22 * x+(b 22-b 12)
\end{aligned}
$$

Two equations and two unknowns.

- If $a 21 / a 11=a 22 / a 12$ then rational solution exists: iff $(b 21-b 11) / a 11=(b 22-b 12) / a 12$.
- If $a 21 / a 11 \neq a 22 / a 12$ then there is one rational solution.

Once we obtain the solutions, check that they are integers and inequalities are satisfied.

- If set of equations have $n(>2)$ members, either $n-2$ are redundant \rightarrow use previous methods.
Else we have more equations compared to the unknowns \rightarrow overdetermined.

```
for (i=1 .. n) {
    for (j=1 .. m) {
        f[i] = g[2*i][j] + 1.0
        g[i+1][3*j] = h[i][j] - 1.5
        h[i+2][2*i-2] = 1.0/i
    }
}
```


What did we do today?

- Dependence testing.

