
CS6013 - Modern Compilers: Theory and Practise
Interprocedural Analysis

V. Krishna Nandivada

IIT Madras

*

Opening remarks

What have we done so far?
Compiler overview.
Scanning and parsing.
JavaCC, visitors and JTB
Semantic Analysis - specification, execution, attribute grammars.
Type checking, Intermediate Representation, Intermediate code
generation.
Control flow analysis.
Data flow analysis, intra-procedural constant propagation.
Loop optimizations.

Announcement:
Assignment 4: ten days to go.

Today:
Inter-procedural analysis.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 2 / 14

*

Interprocedural CFA - Call graph

Inter-procedural CFA constructs a static Call graph
A directed multigraph.

Given a program P, consisting of procedures p1, p2 . . . pn, the call
grpah G = 〈N,S,E,r〉
N is the set of procedures.
S is the set of call sites labels (e.g. line numbers in TAC).
E ⊆ N×S×N: An edge from (p1, s, p2) indicates a call from p1 to p2
at site s.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 3 / 14

*

Example call graph

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 4 / 14



*

Constructing the call graph

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 5 / 14

*

Challenges

Separate compilation – we would not know the complete call
graph; wait till the whole program is available.
Function pointers.
Overloaded functions and inheritance.

Read yourself.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 6 / 14

*

Interprocedural constant propagation

Two flavors of inter-procedural constant propagation.
Context insensitive (call site independent) constant propagation.

For each procedure in a program identify the subset of its
parameters, such that each of the parameter will get a constant
value, in every invocation.
The return value may be constant for every invocation or none.

Context sensitive (call site dependent) constant propagation:
for each particular procedure called from each particular site, the
subset of parameters that have the same constant value each time
the procedure is called at that site.
For each call site, the return value may be constant or not.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 7 / 14

*

Interprocedural constant propagation overview

Function constantProp()
begin

worklist = {root};
while worklist is not empty do

p = worklist.dequeue();
foreach callsite s in p do

compute the actuals of s using the formals of p;
// Intra-procedural constant propagation
Say the function being called at s is q;
Compute the meet of the current values for the formals of q and the
actuals at s;
if constant values of q has changed then

add q to the worklist;

v = compute the meet of all the return values of p;
Set the return value of p to v;
foreach call function q that calls p do

add q to the worklist

end
V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 8 / 14



*

Initialization and modification to to CP algorithm

Initialization

The return value of each function is initialized to >.
The constant value of each formal argument is initialized to >.

Modification to the CP
Constant value of a function call is given by the constant-return
value of the function.
If the statement is of the form a = foo(· · ·), set the constant value
of a to that of the function.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 9 / 14

*

Definitions for a formal algorithm

Jump function: J(p, i,L,x)
i - call site
p - caller procedure
L - formal arguments of caller
x - a formal parameter of the callee.
The jump function maps information about the actual arguments of
the call at the call site i to x.

Return-jump function: R(p,L)
p - procedure
L - formal parameters
Maps the formal parametes to the return value of the function.
If the language admits call-by references:
R(p,L,x), where x - a formal parameter of the callee.
Maps the value returned by the formal parameter x.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 10 / 14

*

Algorithm

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 11 / 14

*

Algorithm

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 12 / 14



*

Discussion

The function J can be thought of as
1 a function that does all the computation required to compute the

actual arguments to the callee in terms of the formal arguments of
the caller. And Eval evaluates the return value of J.

2 It is a simple function that just represents the argument text. And
the Eval function does the actual constant propagation.

the precision of the constant propagation will depend on the
precision of J and Eval
Examples (assuming scheme 1):

Literal constant: If the argument passed is a constant, then a
constant, else ⊥
Pass-through parameter: If a formal parameter is directly passed or
a constant, then pass the constant value, else ⊥
Constant if intra-procedural constant.
Do a full fledged analysis to determine its value.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 13 / 14

*

Closing remarks

What have we done today?
Call graphs.
Inter-procedural constant propagation.

To read
Muchnick - Ch 19.1, 19.3.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 14 / 14


