
CS6013 - Modern Compilers: Theory and Practise
Register Allocation

V. Krishna Nandivada

IIT Madras

*

Opening remarks

What have we done so far?
Compiler overview.
Scanning and parsing.
JavaCC, visitors and JTB
Semantic Analysis - specification, execution, attribute grammars.
Type checking, Intermediate Representation, Intermediate code
generation.
Control flow analysis, interval analysis, structural analysis
Data flow analaysis, intra-procedural and inter-procedural
constant propagation.
Points-to analysis

Announcement:
Assignment 5 is out. Due in three weeks.

Today: Liveness analysis and register allocation.
V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 2 / 1

*

Register allocation

Copyright c© 2016 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 3 / 1

*

Register allocation

errors

IR
machine

code
instruction
selection

register
allocation

Register allocation:
have value in a register when used
limited resources
can effect the instruction choices
can move loads and stores
optimal allocation is difficult
⇒ NP-complete for k ≥ 1 registers

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 4 / 1

*

Liveness analysis

Problem:
IR contains an unbounded number of temporaries
machine has bounded number of registers

Approach:
temporaries with disjoint live ranges can map to same register
if not enough registers then spill some temporaries
(i.e., keep them in memory)

The compiler must perform liveness analysis for each temporary:

It is live if it holds a value that may be needed in future

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 5 / 1

*

Example

a← 0
L1 : b← a+1

c← c+b
a← b×2
if a < N goto L1
return c

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 6 / 1

*

Liveness analysis

Gathering liveness information is a form of data flow analysis operating
over the CFG:

We will treat each statement as a different basic block.
liveness of variables “flows” around the edges of the graph
assignments define a variable, v:

def(v) = set of graph nodes that define v
def[n] = set of variables defined by n

occurrences of v in expressions use it:
use(v) = set of nodes that use v
use[n] = set of variables used in n

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 7 / 1

*

Definitions

v is live on edge e if there is a directed path from SRC(e) to a use
of v that does not pass through any def(v)
v is live-in at node n if live on all of n’s in-edges
v is live-out at n if live on any of n’s out-edges
v ∈ use[n]⇒ v live-in at n

v live-in at n⇒ v live-out at all m ∈ pred[n]
v live-out at n,v 6∈ def[n]⇒ v live-in at n

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 8 / 1

*

Liveness analysis

Define:

in[n] = variables live-in at n

out[n] = variables live-out at n

Then:

out[n] =
⋃

s∈succ(n)

in[s]

succ[n] = φ ⇒ out[n] = φ

Note:

in[n] ⊇ use[n]
in[n] ⊇ out[n]−def[n]

use[n] and def[n] are constant (independent of control flow)
Now, v ∈ in[n] iff. v ∈ use[n] or v ∈ out[n]−def[n]
Thus, in[n] = use[n]∪ (out[n]−def[n])

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 9 / 1

*

Iterative solution for liveness

N : Set of nodes of CFG;
foreach n ∈ N do

in[n]← φ ;
out[n]← φ ;

end
repeat

foreach n ∈ Nodes do
in′[n]← in[n];
out′[n]← out[n];
in[n]← use[n]∪ (out[n]−def [n]);
out[n]←

⋃
s∈succ[n] in[s] ;

end
until ∀n, in′[n] = in[n]∨out′[n] = out[n] ;

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 10 / 1

*

Notes

should order computation of inner loop to follow the “flow”
liveness flows backward along control-flow arcs, from out to in
nodes can just as easily be basic blocks to reduce CFG size
could do one variable at a time, from uses back to defs, noting
liveness along the way

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 11 / 1

*

Iterative solution for liveness

Complexity: for input program of size N

≤ N nodes in CFG
⇒≤ N variables
⇒ N elements per in/out
⇒ O(N) time per set-union
for loop performs constant number of set operations per node
⇒ O(N2) time for for loop
each iteration of repeat loop can only add to each set
sets can contain at most every variable
⇒ sizes of all in and out sets sum to 2N2,
bounding the number of iterations of the repeat loop

⇒ worst-case complexity of O(N4)

ordering can cut repeat loop down to 2-3 iterations
⇒ O(N) or O(N2) in practice

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 12 / 1

*

Least fixed points

There is often more than one solution for a given dataflow problem
(see example).
Any solution to dataflow equations is a conservative approximation:

v has some later use downstream from n
⇒ v ∈ out(n)
but not the converse

Conservatively assuming a variable is live does not break the program;
just means more registers may be needed.
Assuming a variable is dead when really live will break things.
Many possible solutions but we want the “smallest”: the least fixpoint.
The iterative algorithm computes this least fixpoint.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 13 / 1

*

Register allocation - by Graph coloring

Step 1:
Select target machine instructions assuming infinite registers
(temps).
If a instruction requires a special register – replace that temp with
that register.

Step 2:
Construct an interference graph.
Solve the register allocation problem by coloring the graph.
A graph is said to be colored if each each pair of neighboring nodes
have different colors.

Parts of slides: sources - Andrew Myers

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 14 / 1

*

Graph coloring - a simplistic approach

Input: G - the interference graph, K - number of colors
repeat

// Simplify
repeat

Remove a node n and all its edges from G, such that degree of n is
less than K;
Push n onto a stack;

until G has no node with degree less than K ;
// G is either empty or all of its nodes have degree
≥ K

// Spill
if G is not empty then

Take one node m out of G, and mark it for spilling;
Remove all the edges of m from G;

end
until G is empty ;
Take one node at a time from the stack and assign a non conflicting color.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 15 / 1

*

Example 1, available colors = 2

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 16 / 1

*

Example 2

We have to spill.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 17 / 1

*

Graph coloring - Kempe’s heuristic

Algorithm dating back to 1879.

Input: G - the interference graph, K - number of colors
repeat

repeat
Remove a node n and all its edges from G, such that degree of n is
less than K;
Push n onto a stack;

until G has no node with degree less than K ;
// G is either empty or all of its nodes have degree
≥ K

if G is not empty then
Take one node m out of G.;
push m onto the stack;

end
until G is empty ;
Take one node at a time from the stack and assign a non conflicting color (if
possible, else spill).

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 18 / 1

*

Example 2 (revisited)

We don’t have to spill.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 19 / 1

*

Example 3

Don’t have a choice. Have to spill.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 20 / 1

*

Spilling

We need to generate extra instructions to load variables from the
stack and store them back.
The load and store may require registers again:

Naive approach: Keep a separate register (wasteful).
Rewrite the code - by introducing a temporary; rerun the liveness +
ra.
(Note: the new temp has much smaller live range).

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 21 / 1

*

Example: rewrite code

Consider: add t1 t2

Suppose t2 has to be spilled, say to [sp-4].
Invent a new temp t35, and rewrite:
mov t35 [sp-4] add t1 t35

t35 has a very short live range and less likely to interfere.
Now rerun the algo.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 22 / 1

*

Register allocation - Linear scan

Register allocation is expensive.
Many algorithms use heuristics for graph coloring.
Allocation may take time quadratic in the number of live intervals.

Not suitable
Online compilers – need to generate code quickly. e.g. JIT
compilers.
Sacrifice efficient register allocation for compilation speed.

Linear scan register allocation - Massimiliano Poletto and Vivek
Sarkar, ACM TOPLAS 1999

Complexity linear in the number of variables (assuming the
number of register is not too large).

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 23 / 1

*

Register allocation - Chaitins

1 Simplify
2 Spill
3 Select: assign colors to nodes

1 start with empty graph and keep adding nodes:
2 if adding a non-spill node – will have a color (basis for removal)
3 if adding spill node and no color available (neighbors already

K-colored) then mark as an actual spill; break;
4 continue to select nodes.

4 Start over: if select has no actual spills then finished, otherwise
1 rewrite code: fetch spills at use, store at definition
2 recalculate liveness and repeat

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 24 / 1

*

Coalescing

Can delete a move instruction when source s and destination d do
not interfere:

coalesce them into a new node whose edges are the union of those
of s and d

In principle, any pair of non-interfering nodes can be coalesced
unfortunately, the union is more constrained and new graph may no
longer be K-colorable
overly aggressive

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 25 / 1

*

Simplification with aggressive coalescing (by Chaitin)

build

any co
al

es
ce

d
o
n
e

simplify

any

d
o
n
e

sp

il
l

spill

select

aggressive
 coalesce

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 26 / 1

*

Conservative coalescing

Apply tests for coalescing that preserve colorability.
Suppose a and b are candidates for coalescing into node ab.
Briggs: coalesce only if ab has < K neighbors of significant degree ≥ K

simplify first removes all insignificant-degree neighbors
ab will then be adjacent to < K neighbors
simplify can then remove ab

George: coalesce only if all significant-degree neighbors of a already
interfere with b

simplify removes all insignificant-degree neighbors of a

remaining significant-degree neighbors of a already interfere with
b; coalescing does not increase degree of any node

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 27 / 1

*

Iterated register coalescing

Interleave simplification with coalescing to eliminate most moves while
guaranteeing not to introduce spills:

1 Build interference graph G and distinguish move-related from
non-move-related nodes. A move-related node is one that is either
the source or destination of a move instruction.

2 Simplify: remove non-move-related nodes of low degree one at a
time

3 Coalesce: conservatively coalesce move-related nodes
remove associated move instruction
if resulting node is non-move-related it can now be simplified
repeat simplify and coalesce until only significant-degree or
uncoalesced moves

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 28 / 1

*

Iterated register coalescing (cont.)

4. Freeze: if unable to simplify or coalesce
1 look for move-related node of low-degree
2 freeze its associated moves (give up on coalescing)
3 now treat as non-move-related; resume iteration of simplify and

coalesce
5. Spill: if no low-degree nodes

1 select candidate for spilling
2 remove to stack and continue simplifying

6. Select: pop stack assigning colors (with actual spills)
7. Start over: if select has no actual spills then finished, otherwise

1 rewrite code: fetch spills before use, store after def
2 recalculate liveness and repeat

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 29 / 1

*

Iterated register coalescing

select

potential
spill

actual
 spill

build

conservative
 coalesce

simplify

freeze

SSA constant
 propagation

(optional)

sp
il

ls
d
o
n
e

an
y

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 30 / 1

*

Precolored nodes

Precolored nodes correspond to machine registers (e.g., stack pointer,
arguments, return address, return value)

select and coalesce can give an ordinary temporary the same
color as a precolored register, if they don’t interfere
e.g., argument registers can be reused inside procedures for a
temporary
simplify, freeze and spill cannot be performed on them
also, precolored nodes interfere with other precolored nodes

So, treat precolored nodes as having infinite degree
This also avoids needing to store large adjacency lists for precolored
nodes; coalescing can use the George criterion

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 31 / 1

*

Temporary copies of machine registers

Since precolored nodes don’t spill, their live ranges must be kept short:

1 use move instructions
2 move callee-save registers to fresh temporaries on procedure

entry, and back on exit, spilling between as necessary
3 register pressure will spill the fresh temporaries as necessary,

otherwise they can be coalesced with their precolored counterpart
and the moves deleted

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 32 / 1

*

Criteria for spilling

During register allocation, we identify that one of the live ranges from a
given set, has to be spilled. Criteria?

Random! Adv? Disadv?
One with maximum degree
One that has the longest life
One with the shortest life (take advantage of the cache).
One with least cost.

Cost = Dynamic (load cost + store cost)
How to handle loops, conditionals?
Cost of load, store

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 33 / 1

*

Example

enter:
c := r3
a := r1
b := r2
d := 0
e := a

loop:
d := d + b
e := e - 1
if e > 0 goto loop
r1 := d
r3 := c
return [r1, r3 live out]

Temporaries are a, b, c, d, e

Assume target machine with K = 3 registers: r1, r2
(caller-save/argument/result), r3 (callee-save)

The code generator has already made arrangements to save r3
explicitly by copying into temporary a and back.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 34 / 1

*

Example (cont.)

Interference graph:

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 35 / 1

*

Example (cont.)

No opportunity for simplify or freeze (all non-precolored nodes
have significant degree ≥ K)
Any coalesce will produce a new node adjacent to ≥ K
significant-degree nodes
Must spill based on priorities:
Node uses + defs uses + defs degree priority

outside loop inside loop
a (2 +10× 0)/ 4 = 0.50
b (1 +10× 1)/ 4 = 2.75
c (2 +10× 0)/ 6 = 0.33
d (2 +10× 2)/ 4 = 5.50
e (1 +10× 3)/ 3 = 10.30

Node c has lowest priority so spill it

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 36 / 1

*

Example (cont.)

Interference graph with c removed:

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 37 / 1

*

Example (cont.)

Only possibility is to coalesce a and e: ae will have < K
significant-degree neighbors (after coalescing d will be low-degree,
though high-degree before)

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 38 / 1

*

Example (cont.)

Can now coalesce b with r2 (or coalesce ae and r1):

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 39 / 1

*

Example (cont.)

Coalescing ae and r1 (could also coalesce d with r1):

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 40 / 1

*

Example (cont.)

Cannot coalesce r1ae with d because the move is constrained: the
nodes interfere. Must simplify d:

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 41 / 1

*

Example (cont.)

Graph now has only precolored nodes, so pop nodes from stack
coloring along the way

d ≡ r3
a, b, e have colors by coalescing
c must spill since no color can be found for it

Introduce new temporaries c1 and c2 for each use/def, add loads
before each use and stores after each def

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 42 / 1

*

Example (cont.)

enter:
c1 := r3
M[c_loc] := c1
a := r1
b := r2
d := 0
e := a

loop:
d := d + b
e := e - 1
if e > 0 goto loop
r1 := d
c2 := M[c_loc]
r3 := c2
return [r1, r3 live out]

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 43 / 1

*

Example (cont.)

New interference graph:

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 44 / 1

*

Example (cont.)

Coalesce c1 with r3, then c2 with r3:

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 45 / 1

*

Example (cont.)

As before, coalesce a with e, then b with r2:

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 46 / 1

*

Example (cont.)

As before, coalesce ae with r1 and simplify d:

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 47 / 1

*

Example (cont.)

Pop d from stack: select r3. All other nodes were coalesced or
precolored. So, the coloring is:

a ≡ r1

b ≡ r2

c ≡ r3

d ≡ r3

e ≡ r1

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 48 / 1

*

Example (cont.)

Rewrite the program with this assignment:

enter:
r3 := r3
M[c_loc] := r3
r1 := r1
r2 := r2
r3 := 0
r1 := r1

loop:
r3 := r3 + r2
r1 := r1 - 1
if r1 > 0 goto loop
r1 := r3
r3 := M[c_loc]
r3 := r3
return [r1, r3 live out]

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 49 / 1

*

Example (cont.)

Delete moves with source and destination the same (coalesced):

enter:
M[c_loc] := r3
r3 := 0

loop:
r2 := r3 + r2
r1 := r1 - 1
if r1 > 0 goto loop
r1 := r3
r3 := M[c_loc]
return [r1, r3 live out]

One uncoalesced move remains

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2016 50 / 1

