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The role of the parser

code
source tokens

errors

scanner parser IR

A parser
performs context-free syntax analysis
guides context-sensitive analysis
constructs an intermediate representation
produces meaningful error messages
attempts error correction

For the next several classes, we will look at parser construction
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Syntax analysis by using a CFG

Context-free syntax is specified with a context-free grammar.
Formally, a CFG G is a 4-tuple (Vt,Vn,S,P), where:

Vt is the set of terminal symbols in the grammar.
For our purposes, Vt is the set of tokens returned by the
scanner.

Vn, the nonterminals, is a set of syntactic variables that
denote sets of (sub)strings occurring in the language.
These are used to impose a structure on the grammar.

S is a distinguished nonterminal (S ∈ Vn) denoting the entire
set of strings in L(G).
This is sometimes called a goal symbol.

P is a finite set of productions specifying how terminals and
non-terminals can be combined to form strings in the
language.
Each production must have a single non-terminal on its
left hand side.

The set V = Vt∪Vn is called the vocabulary of G.
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Notation and terminology

a,b,c, . . . ∈ Vt

A,B,C, . . . ∈ Vn

U,V,W, . . . ∈ V

α,β ,γ, . . . ∈ V∗
u,v,w, . . . ∈ Vt∗

If A→ γ then αAβ ⇒ αγβ is a single-step derivation using A→ γ

Similarly,→∗ and⇒+ denote derivations of ≥ 0 and ≥ 1 steps

If S→∗ β then β is said to be a sentential form of G

L(G) = {w ∈ Vt∗ | S⇒+ w}, w ∈ L(G) is called a sentence of G

Note, L(G) = {β ∈ V∗ | S→∗ β}∩Vt∗
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Syntax analysis

Grammars are often written in Backus-Naur form (BNF).
Example:

1 〈goal〉 ::= 〈expr〉
2 〈expr〉 ::= 〈expr〉〈op〉〈expr〉
3 | num
4 | id
5 〈op〉 ::= +
6 | −
7 | ∗
8 | /

This describes simple expressions over numbers and identifiers.
In a BNF for a grammar, we represent

1 non-terminals with angle brackets or capital letters
2 terminals with typewriter font or underline
3 productions as in the example

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2017 6 / 98

*

Derivations

We can view the productions of a CFG as rewriting rules.
Using our example CFG (for x + 2 ∗ y):

〈goal〉 ⇒ 〈expr〉
⇒ 〈expr〉〈op〉〈expr〉
⇒ 〈id,x〉〈op〉〈expr〉
⇒ 〈id,x〉+ 〈expr〉
⇒ 〈id,x〉+ 〈expr〉〈op〉〈expr〉
⇒ 〈id,x〉+ 〈num,2〉〈op〉〈expr〉
⇒ 〈id,x〉+ 〈num,2〉 ∗ 〈expr〉
⇒ 〈id,x〉+ 〈num,2〉 ∗ 〈id,y〉

We have derived the sentence x + 2 ∗ y.
We denote this 〈goal〉→∗ id + num ∗ id.
Such a sequence of rewrites is a derivation or a parse.
The process of discovering a derivation is called parsing.
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Derivations

At each step, we chose a non-terminal to replace.
This choice can lead to different derivations.
Two are of particular interest:

leftmost derivation
the leftmost non-terminal is replaced at each step
rightmost derivation
the rightmost non-terminal is replaced at each step

The previous example was a leftmost derivation.
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Rightmost derivation

For the string x + 2 ∗ y:

〈goal〉 ⇒ 〈expr〉
⇒ 〈expr〉〈op〉〈expr〉
⇒ 〈expr〉〈op〉〈id,y〉
⇒ 〈expr〉 ∗ 〈id,y〉
⇒ 〈expr〉〈op〉〈expr〉 ∗ 〈id,y〉
⇒ 〈expr〉〈op〉〈num,2〉 ∗ 〈id,y〉
⇒ 〈expr〉+ 〈num,2〉 ∗ 〈id,y〉
⇒ 〈id,x〉+ 〈num,2〉 ∗ 〈id,y〉

Again, 〈goal〉⇒∗ id + num ∗ id.
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Precedence

goal

expr

expr op expr

expr op expr * <id,y>

<num,2>+<id,x>

Treewalk evaluation computes (x + 2) ∗ y
— the “wrong” answer!
Should be x + (2 ∗ y)
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Precedence

These two derivations point out a problem with the grammar.
It has no notion of precedence, or implied order of evaluation.
To add precedence takes additional machinery:

1 〈goal〉 ::= 〈expr〉
2 〈expr〉 ::= 〈expr〉+ 〈term〉
3 | 〈expr〉−〈term〉
4 | 〈term〉
5 〈term〉 ::= 〈term〉 ∗ 〈factor〉
6 | 〈term〉/〈factor〉
7 | 〈factor〉
8 〈factor〉 ::= num
9 | id

This grammar enforces a precedence on the derivation:
terms must be derived from expressions
forces the “correct” tree
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Precedence

Now, for the string x + 2 ∗ y:

〈goal〉 ⇒ 〈expr〉
⇒ 〈expr〉+ 〈term〉
⇒ 〈expr〉+ 〈term〉 ∗ 〈factor〉
⇒ 〈expr〉+ 〈term〉 ∗ 〈id,y〉
⇒ 〈expr〉+ 〈factor〉 ∗ 〈id,y〉
⇒ 〈expr〉+ 〈num,2〉 ∗ 〈id,y〉
⇒ 〈term〉+ 〈num,2〉 ∗ 〈id,y〉
⇒ 〈factor〉+ 〈num,2〉 ∗ 〈id,y〉
⇒ 〈id,x〉+ 〈num,2〉 ∗ 〈id,y〉

Again, 〈goal〉⇒∗ id + num ∗ id, but this time, we build the desired tree.
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Precedence

expr

expr

+

term

factor

<id,x>

goal

term

*term

<num,2>

factor

factor

<id,y>

Treewalk evaluation computes x + (2 ∗ y)
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Ambiguity

If a grammar has more than one derivation for a single sentential form,
then it is ambiguous
Example:
〈stmt〉 ::= if 〈expr〉then 〈stmt〉

| if 〈expr〉then 〈stmt〉else 〈stmt〉
| other stmts

Consider deriving the sentential form:
if E1 then if E2 then S1 else S2

It has two derivations.
This ambiguity is purely grammatical.
It is a context-free ambiguity.
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Ambiguity

May be able to eliminate ambiguities by rearranging the grammar:
〈stmt〉 ::= 〈matched〉

| 〈unmatched〉
〈matched〉 ::= if 〈expr〉 then 〈matched〉 else 〈matched〉

| other stmts
〈unmatched〉 ::= if 〈expr〉 then 〈stmt〉

| if 〈expr〉 then 〈matched〉 else 〈unmatched〉

This generates the same language as the ambiguous grammar, but
applies the common sense rule:

match each else with the closest unmatched then

This is most likely the language designer’s intent.
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Ambiguity

Ambiguity is often due to confusion in the context-free specification.
Context-sensitive confusions can arise from overloading.
Example:

a = f(17)

In many Algol/Scala-like languages, f could be a function or
subscripted variable. Disambiguating this statement requires context:

need values of declarations
not context-free
really an issue of type

Rather than complicate parsing, we will handle this separately.
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Scanning vs. parsing

Where do we draw the line?
term ::= [a−zA−z]([a−zA−z] | [0−9])∗

| 0 | [1−9][0−9]∗
op ::= + | − | ∗ | /
expr ::= (term op)∗term

Regular expressions are used to classify:
identifiers, numbers, keywords
REs are more concise and simpler for tokens than a grammar
more efficient scanners can be built from REs (DFAs) than
grammars

Context-free grammars are used to count:
brackets: (), begin. . .end, if. . .then. . .else
imparting structure: expressions

Syntactic analysis is complicated enough: grammar for C has around 200
productions. Factoring out lexical analysis as a separate phase makes
compiler more manageable.
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Parsing: the big picture

parser

generator

code

parser

tokens

IR

grammar

Our goal is a flexible parser generator system
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Different ways of parsing: Top-down Vs Bottom-up

Top-down parsers
start at the root of derivation tree and fill in
picks a production and tries to match the input
may require backtracking
some grammars are backtrack-free (predictive)

Bottom-up parsers
start at the leaves and fill in
start in a state valid for legal first tokens
as input is consumed, change state to encode possibilities
(recognize valid prefixes)
use a stack to store both state and sentential forms
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Top-down parsing

A top-down parser starts with the root of the parse tree, labelled with
the start or goal symbol of the grammar.
To build a parse, it repeats the following steps until the fringe of the
parse tree matches the input string

1 At a node labelled A, select a production A→ α and construct the
appropriate child for each symbol of α

2 When a terminal is added to the fringe that doesn’t match the
input string, backtrack

3 Find next node to be expanded (must have a label in Vn)

The key is selecting the right production in step 1.

If the parser makes a wrong step, the “derivation” process does not
terminate.
Why is it bad?
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Left-recursion

Top-down parsers cannot handle left-recursion in a grammar
Formally, a grammar is left-recursive if

∃A ∈ Vn such that A⇒+ Aα for some string α

Our simple expression grammar is left-recursive
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Eliminating left-recursion

To remove left-recursion, we can transform the grammar
Consider the grammar fragment:

〈foo〉 ::= 〈foo〉α
| β

where α and β do not start with 〈foo〉
We can rewrite this as:

〈foo〉 ::= β 〈bar〉
〈bar〉 ::= α〈bar〉

| ε

where 〈bar〉 is a new non-terminal

This fragment contains no left-recursion
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How much lookahead is needed?

We saw that top-down parsers may need to backtrack when they
select the wrong production
Do we need arbitrary lookahead to parse CFGs?

in general, yes
use the Earley or Cocke-Younger, Kasami algorithms

Fortunately
large subclasses of CFGs can be parsed with limited lookahead
most programming language constructs can be expressed in a
grammar that falls in these subclasses

Among the interesting subclasses are:
LL(1): left to right scan, left-most derivation, 1-token lookahead;

and
LR(1): left to right scan, reversed right-most derivation, 1-token

lookahead
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Predictive parsing

Basic idea:
For any two productions A→ α | β , we would like a distinct way of
choosing the correct production to expand.
For some RHS α ∈ G, define FIRST(α) as the set of tokens that
appear first in some string derived from α.
That is, for some w ∈ V∗t , w ∈ FIRST(α) iff. α ⇒∗ wγ.
Key property:
Whenever two productions A→ α and A→ β both appear in the
grammar, we would like

FIRST(α)∩ FIRST(β ) = φ

This would allow the parser to make a correct choice with a
lookahead of only one symbol!
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Left factoring

What if a grammar does not have this property?
Sometimes, we can transform a grammar to have this property.

For each non-terminal A find the longest prefix
α common to two or more of its alternatives.

if α 6= ε then replace all of the A productions
A→ αβ1 | αβ2 | · · · | αβn

with
A→ αA′

A′→ β1 | β2 | · · · | βn

where A′ is a new non-terminal.

Repeat until no two alternatives for a single
non-terminal have a common prefix.
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Example

There are two non-terminals
to left factor:
〈expr〉 ::= 〈term〉+ 〈expr〉

| 〈term〉−〈expr〉
| 〈term〉

〈term〉 ::= 〈factor〉 ∗ 〈term〉
| 〈factor〉/〈term〉
| 〈factor〉

Applying the transformation:

〈expr〉 ::= 〈term〉〈expr′〉
〈expr′〉 ::= +〈expr〉

| −〈expr〉
| ε

〈term〉 ::= 〈factor〉〈term′〉
〈term′〉 ::= ∗〈term〉

| /〈term〉
| ε
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Indirect Left-recursion elimination

Given a left-factored CFG, to eliminate left-recursion:
1 Input: Grammar G with no cycles and no ε productions.
2 Output: Equivalent grammat with no left-recursion. begin
3 Arrange the non terminals in some order A1,A2, · · ·An;
4 foreach i = 1 · · ·n do
5 foreach j = 1 · · · i−1 do
6 Say the ith production is: Ai→ Ajγ ;
7 and Aj→ δ1|δ2| · · · |δk;
8 Replace, the ith production by:
9 Ai→ δ1γ|δ2γ| · · · δnγ;

10 Eliminate immediate left recursion in Ai;
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Generality

Question:
By left factoring and eliminating left-recursion, can we
transform an arbitrary context-free grammar to a form where it
can be predictively parsed with a single token lookahead?

Answer:
Given a context-free grammar that doesn’t meet our
conditions, it is undecidable whether an equivalent grammar
exists that does meet our conditions.

Many context-free languages do not have such a grammar:

{an0bn | n≥ 1}∪{an1b2n | n≥ 1}

Must look past an arbitrary number of a’s to discover the 0 or the 1 and
so determine the derivation.
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Recursive descent parsing

1 int A()
2 begin
3 foreach production of the form A→ X1X2X3 · · ·Xk do
4 for i = 1 to k do
5 if Xi is a non-terminal then
6 if (Xi() 6= 0) then
7 backtrack; break; // Try the next production

8 else if Xi matches the current input symbol a then
9 advance the input to the next symbol;

10 else
11 backtrack; break; // Try the next production

12 if i EQ k+1 then
13 return 0; // Success

14 return 1; // Failure
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Recursive descent parsing

Backtracks in general – in practise may not do much.
How to backtrack?
A left recursive grammar will lead to infinite loop.
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Non-recursive predictive parsing

Now, a predictive parser looks like:

scanner
table-driven

parser
IR

parsing

tables

stack

source

code

tokens

Rather than writing recursive code, we build tables.
Why?Building tables can be automated, easily.
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Table-driven parsers

A parser generator system often looks like:

scanner
table-driven

parser
IR

parsing

tables

stack

source

code

tokens

parser

generator
grammar

This is true for both top-down (LL) and bottom-up (LR) parsers
This also uses a stack – but mainly to remember part of the input
string; no recursion.
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FIRST

For a string of grammar symbols α, define FIRST(α) as:
the set of terminals that begin strings derived from α:
{a ∈ Vt | α ⇒∗ aβ}
If α ⇒∗ ε then ε ∈ FIRST(α)

FIRST(α) contains the tokens valid in the initial position in α

To build FIRST(X):
1 If X ∈ Vt then FIRST(X) is {X}
2 If X→ ε then add ε to FIRST(X)
3 If X→ Y1Y2 · · ·Yk:

1 Put FIRST(Y1)−{ε} in FIRST(X)
2 ∀i : 1 < i≤ k, if ε ∈ FIRST(Y1)∩·· ·∩ FIRST(Yi−1)

(i.e., Y1 · · ·Yi−1⇒∗ ε)
then put FIRST(Yi)−{ε} in FIRST(X)

3 If ε ∈ FIRST(Y1)∩·· ·∩ FIRST(Yk) then put ε in FIRST(X)
Repeat until no more additions can be made.
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FOLLOW

For a non-terminal A, define FOLLOW(A) as

the set of terminals that can appear immediately to the right
of A in some sentential form

Thus, a non-terminal’s FOLLOW set specifies the tokens that can
legally appear after it.
A terminal symbol has no FOLLOW set.
To build FOLLOW(A):

1 Put $ in FOLLOW(〈goal〉)
2 If A→ αBβ :

1 Put FIRST(β )−{ε} in FOLLOW(B)
2 If β = ε (i.e., A→ αB) or ε ∈ FIRST(β ) (i.e., β ⇒∗ ε) then put

FOLLOW(A) in FOLLOW(B)
Repeat until no more additions can be made
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LL(1) grammars

Previous definition
A grammar G is LL(1) iff. for all non-terminals A, each distinct
pair of productions A→ β and A→ γ satisfy the condition
FIRST(β )

⋂
FIRST(γ) = φ .

What if A⇒∗ ε?
Revised definition

A grammar G is LL(1) iff. for each set of productions
A→ α1 | α2 | · · · | αn:

1 FIRST(α1),FIRST(α2), . . . ,FIRST(αn) are all pairwise
disjoint

2 If αi⇒∗ ε then
FIRST(αj)

⋂
FOLLOW(A) = φ ,∀1≤ j≤ n, i 6= j.

If G is ε-free, condition 1 is sufficient.
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LL(1) grammars

Provable facts about LL(1) grammars:
1 No left-recursive grammar is LL(1)
2 No ambiguous grammar is LL(1)
3 Some languages have no LL(1) grammar
4 A ε–free grammar where each alternative expansion for A begins

with a distinct terminal is a simple LL(1) grammar.
Example

S→ aS | a is not LL(1) because FIRST(aS) = FIRST(a) = {a}
S→ aS′

S′→ aS′ | ε
accepts the same language and is LL(1)
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LL(1) parse table construction

Input: Grammar G
Output: Parsing table M
Method:

1 ∀ productions A→ α:
1 ∀a ∈ FIRST(α), add A→ α to M[A,a]
2 If ε ∈ FIRST(α):

1 ∀b ∈ FOLLOW(A), add A→ α to M[A,b]
2 If $ ∈ FOLLOW(A) then add A→ α to M[A,$]

2 Set each undefined entry of M to error

If ∃M[A,a] with multiple entries then grammar is not LL(1).

Note: recall a,b ∈ Vt, so a,b 6= ε
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Example

Our long-suffering expression grammar:
1. S → E 6. T → FT ′
2. E → TE′ 7. T ′ →∗T
3. E′ →+E 8. | /T
4. | −E 9. | ε
5. | ε 10. F → num

11. | id
FIRST FOLLOW id num + − ∗ / $

S num,id $ 1 1 − − − − −
E num,id $ 2 2 − − − − −
E′ ε,+,− $ − − 3 4 − − 5
T num,id +,−,$ 6 6 − − − − −
T ′ ε,∗,/ +,−,$ − − 9 9 7 8 9
F num,id +,−,∗,/,$ 11 10 − − − − −
id id −
num num −
∗ ∗ −
/ / −
+ + −
− − −
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Table driven Predictive parsing
Input: A string w and a parsing table M for a grammar G
Output: If w is in L(G), a leftmost derivation of w; otherwise, indicate an error

1 push $ onto the stack; push S onto the stack;
2 inp points to the input tape;
3 X = stack.top();
4 while X 6= $ do
5 if X is inp then
6 stack.pop(); inp++;

7 else if X is a terminal then
8 error();

9 else if M[X,a] is an error entry then
10 error();

11 else if M[X,a] = X→ Y1Y2 · · ·Yk then
12 output the production X→ Y1Y2 · · ·Yk;
13 stack.pop();
14 push Yk,Yk−1, · · ·Y1 in that order;

15 X = stack.top();
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A grammar that is not LL(1)

〈stmt〉 ::= if 〈expr〉 then 〈stmt〉
| if 〈expr〉 then 〈stmt〉 else 〈stmt〉
| . . .

Left-factored: 〈stmt〉 ::= if 〈expr〉 then 〈stmt〉 〈stmt′〉 | . . .
〈stmt′〉 ::= else 〈stmt〉 | ε

Now,

FIRST(〈stmt′〉) = {ε,else}
Also, FOLLOW(〈stmt′〉) = {else,$}
But, FIRST(〈stmt′〉)

⋂
FOLLOW(〈stmt′〉) = {else} 6= φ

On seeing else, there is a conflict between choosing

〈stmt′〉 ::= else 〈stmt〉 and 〈stmt′〉 ::= ε

⇒ grammar is not LL(1)!
The fix:

Put priority on 〈stmt′〉 ::= else 〈stmt〉 to associate else with
closest previous then.
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Another example of painful left-factoring

Here is a typical example where a programming language fails to
be LL(1):

stmt → asginment | call | other
assignment → id := exp
call → id (exp-list)

This grammar is not in a form that can be left factored. We must
first replace assignment and call by the right-hand sides of their
defining productions:
statement → id := exp | id( exp-list ) | other

We left factor:
statement → id stmt’ | other
stmt’ → := exp (exp-list)

See how the grammar obscures the language semantics.
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Error recovery in Predictive Parsing

An error is detected when the terminal on top of the stack does
not match the next input symbol or M[A,a] = error.

Panic mode error recovery
Skip input symbols till a “synchronizing” token appears.

Q: How to identify a synchronizing token?
Some heuristics:

All symbols in FOLLOW(A) in the synchronizing set for the
non-terminal A.
Semicolon after a Stmt production: assgignmentStmt;
assignmentStmt;
If a terminal on top of the stack cannot be matched? –

pop the terminal.
issue a message that the terminal was inserted.

Q: How about error messages?
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Some definitions

Recall
For a grammar G, with start symbol S, any string α such that
S⇒∗ α is called a sentential form
If α ∈ V∗t , then α is called a sentence in L(G)

Otherwise it is just a sentential form (not a sentence in L(G))
A left-sentential form is a sentential form that occurs in the leftmost
derivation of some sentence.
A right-sentential form is a sentential form that occurs in the rightmost
derivation of some sentence.

An unambiguous grammar will have a unique leftmost/rightmost
derivation.
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Bottom-up parsing

Goal:
Given an input string w and a grammar G, construct a parse
tree by starting at the leaves and working to the root.
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Reductions Vs Derivations

Reduction:
At each reduction step, a specific substring matching the body of
a production is replaced by the non-terminal at the head of the
production.

Key decisions
When to reduce?
What production rule to apply?

Reduction Vs Derivations
Recall: In derivation: a non-terminal in a sentential form is
replaced by the body of one of its productions.
A reduction is reverse of a step in derivation.

Bottom-up parsing is the process of “reducing” a string w to the
start symbol.
Goal of bottum-up parsing: build derivation tree in reverse.
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Example

Consider the grammar

1 S → aABe
2 A → Abc
3 | b
4 B → d

and the input string abbcde
Prod’n. Sentential Form

3 a b bcde

2 a Abc de

4 aA d e

1 aABe
– S

The trick appears to be scanning the input and finding valid sentential
forms.
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Handles

S

α

A

wβ

The handle A→ β in the parse tree
for αβw

Informally, a “handle” is

a substring that matches the
body of a production (not
necessarily the first one),

and reducing this handle,
represents one step of reduction
(or reverse rightmost derivation).
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Handles

Theorem:
If G is unambiguous then every right-sentential form has a
unique handle.

Proof: (by definition)
1 G is unambiguous⇒ rightmost derivation is unique
2 ⇒ a unique production A→ β applied to take γi−1 to γi

3 ⇒ a unique position k at which A→ β is applied
4 ⇒ a unique handle A→ β
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Example

The left-recursive expression grammar (original form)
1 〈goal〉 ::= 〈expr〉
2 〈expr〉 ::= 〈expr〉+ 〈term〉
3 | 〈expr〉−〈term〉
4 | 〈term〉
5 〈term〉 ::= 〈term〉 ∗ 〈factor〉
6 | 〈term〉/〈factor〉
7 | 〈factor〉
8 〈factor〉 ::= num
9 | id

Prod’n. Sentential Form
– 〈goal〉
1 〈expr〉
3 〈expr〉 − 〈term〉
5 〈expr〉 − 〈term〉 ∗ 〈factor〉
9 〈expr〉 − 〈term〉 ∗ id
7 〈expr〉 − 〈factor〉 ∗ id
8 〈expr〉 − num ∗ id
4 〈term〉 − num ∗ id
7 〈factor〉 − num ∗ id
9 id − num ∗ id
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Handle-pruning

The process to construct a bottom-up parse is called handle-pruning.
To construct a rightmost derivation

S = γ0⇒ γ1⇒ γ2⇒ ··· ⇒ γn−1⇒ γn = w

we set i to n and apply the following simple algorithm
for i = n downto 1

1 find the handle Ai→ βi in γi
2 replace βi with Ai to generate γi−1

This takes 2n steps, where n is the length of the derivation

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2017 50 / 98

*

Stack implementation

One scheme to implement a handle-pruning, bottom-up parser is
called a shift-reduce parser.
Shift-reduce parsers use a stack and an input buffer

1 initialize stack with $
2 Repeat until the top of the stack is the goal symbol and the input

token is $
a) find the handle

if we don’t have a handle on top of the stack, shift an input symbol
onto the stack

b) prune the handle
if we have a handle A→ β on the stack, reduce

i) pop | β | symbols off the stack
ii) push A onto the stack
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Example: back to x − 2 ∗ y

1 S →E
2 E→E+T
3 | E−T
4 | T
5 T→ T ∗F
6 | T/F
7 | F
8 F→ num
9 | id

Stack Input Action
$ id − num ∗ id S
$id − num ∗ id R9
$〈factor〉 − num ∗ id R7
$〈term〉 − num ∗ id R4
$〈expr〉 − num ∗ id S
$〈expr〉 − num ∗ id S
$〈expr〉 − num ∗ id R8
$〈expr〉 − 〈factor〉 ∗ id R7
$〈expr〉 − 〈term〉 ∗ id S
$〈expr〉 − 〈term〉 ∗ id S
$〈expr〉 − 〈term〉 ∗ id R9
$〈expr〉 − 〈term〉 ∗ 〈factor〉 R5
$〈expr〉 − 〈term〉 R3
$〈expr〉 R1
$〈goal〉 A
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Shift-reduce parsing

Shift-reduce parsers are simple to understand
A shift-reduce parser has just four canonical actions:

1 shift — next input symbol is shifted onto the top of the stack
2 reduce — right end of handle is on top of stack;

locate left end of handle within the stack;
pop handle off stack and push appropriate non-terminal LHS

3 accept — terminate parsing and signal success
4 error — call an error recovery routine

Key insight: recognize handles with a DFA:
DFA transitions shift states instead of symbols
accepting states trigger reductions

May have Shift-Reduce Conflicts.
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LR parsing

The skeleton parser:

push s0
token ← next token()
repeat forever

s ← top of stack
if action[s,token] = "shift si" then

push si
token ← next token()

else if action[s,token] = "reduce A→ β"
then
pop | β | states
s′← top of stack
push goto[s′,A]

else if action[s, token] = "accept" then
return

else error()

“How many ops?”:k shifts, l reduces, and 1 accept, where k is length
of input string and l is length of reverse rightmost derivation
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Example tables

state ACTION GOTO
id + ∗ $ E T F

0 s4 – – – 1 2 3
1 – – – acc – – –
2 – s5 – r3 – – –
3 – r5 s6 r5 – – –
4 – r6 r6 r6 – – –
5 s4 – – – 7 2 3
6 s4 – – – – 8 3
7 – – – r2 – – –
8 – r4 – r4 – – –

The Grammar
1 S →E
2 E→ T +E
3 | T
4 T→F ∗T
5 | F
6 F→ id

Note: This is a simple little right-recursive grammar. It is not the same grammar as in
previous lectures.
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Example using the tables

Stack Input Action
$ 0 id∗ id+ id$ s4
$ 0 4 ∗ id+ id$ r6
$ 0 3 ∗ id+ id$ s6
$ 0 3 6 id+ id$ s4
$ 0 3 6 4 + id$ r6
$ 0 3 6 3 + id$ r5
$ 0 3 6 8 + id$ r4
$ 0 2 + id$ s5
$ 0 2 5 id$ s4
$ 0 2 5 4 $ r6
$ 0 2 5 3 $ r5
$ 0 2 5 2 $ r3
$ 0 2 5 7 $ r2
$ 0 1 $ acc
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LR(k) grammars

Informally, we say that a grammar G is LR(k) if, given a rightmost
derivation

S = γ0⇒ γ1⇒ γ2⇒ ·· · ⇒ γn = w,

we can, for each right-sentential form in the derivation:
1 isolate the handle of each right-sentential form, and
2 determine the production by which to reduce

by scanning γi from left to right, going at most k symbols beyond the
right end of the handle of γi.
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LR(k) grammars

Formally, a grammar G is LR(k) iff.:
1 S⇒∗rm αAw⇒rm αβw, and
2 S⇒∗rm γBx⇒rm αβy, and
3 FIRSTk(w) = FIRSTk(y)

⇒ αAy = γBx
i.e., Assume sentential forms αβw and αβy, with common prefix αβ

and common k-symbol lookahead FIRSTk(y) = FIRSTk(w), such that
αβw reduces to αAw and αβy reduces to γBx.
But, the common prefix means αβy also reduces to αAy, for the same
result.
Thus αAy = γBx.
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Why study LR grammars?

LR(1) grammars are often used to construct parsers.
We call these parsers LR(1) parsers.

virtually all context-free programming language constructs can be
expressed in an LR(1) form
LR grammars are the most general grammars parsable by a
deterministic, bottom-up parser
efficient parsers can be implemented for LR(1) grammars
LR parsers detect an error as soon as possible in a left-to-right
scan of the input
LR grammars describe a proper superset of the languages
recognized by predictive (i.e., LL) parsers

LL(k): recognize use of a production A→ β seeing first k
symbols derived from β

LR(k): recognize the handle β after seeing everything
derived from β plus k lookahead symbols
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LR parsing

Three common algorithms to build tables for an “LR” parser:
1 SLR(1)

smallest class of grammars
smallest tables (number of states)
simple, fast construction

2 LR(1)
full set of LR(1) grammars
largest tables (number of states)
slow, large construction

3 LALR(1)
intermediate sized set of grammars
same number of states as SLR(1)
canonical construction is slow and large
better construction techniques exist
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SLR vs. LR/LALR

An LR(1) parser for either Algol or Pascal has several thousand states,
while an SLR(1) or LALR(1) parser for the same language may have
several hundred states.
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LR(k) items

The table construction algorithms use sets of LR(k) items or
configurations to represent the possible states in a parse.
An LR(k) item is a pair [α,β ], where

α is a production from G with a • at some position in the RHS,
marking how much of the RHS of a production has already been
seen

β is a lookahead string containing k symbols (terminals or $)
Two cases of interest are k = 0 and k = 1:

LR(0) items play a key role in the SLR(1) table construction
algorithm.

LR(1) items play a key role in the LR(1) and LALR(1) table
construction algorithms.
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Example

The • indicates how much of an item we have seen at a given state in
the parse:
[A→•XYZ] indicates that the parser is looking for a string that can be

derived from XYZ
[A→ XY •Z] indicates that the parser has seen a string derived from

XY and is looking for one derivable from Z

LR(0) items: (no lookahead)
A→ XYZ generates 4 LR(0) items:

1 [A→•XYZ]
2 [A→ X •YZ]
3 [A→ XY •Z]
4 [A→ XYZ•]
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The characteristic finite state machine (CFSM)

The CFSM for a grammar is a DFA which recognizes viable prefixes of
right-sentential forms:

A viable prefix is any prefix that does not extend beyond the
handle.

It accepts when a handle has been discovered and needs to be
reduced.
To construct the CFSM we need two functions:

CLOSURE(I) to build its states
GOTO(I,X) to determine its transitions
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CLOSURE

Given an item [A→ α •Bβ ], its closure contains the item and any other
items that can generate legal substrings to follow α.
Thus, if the parser has viable prefix α on its stack, the input should
reduce to Bβ (or γ for some other item [B→•γ] in the closure).

function CLOSURE(I)
repeat

if [A→ α •Bβ ] ∈ I
add [B→•γ] to I

until no more items can be added to I
return I
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GOTO

Let I be a set of LR(0) items and X be a grammar symbol.
Then, GOTO(I,X) is the closure of the set of all items

[A→ αX •β ] such that [A→ α •Xβ ] ∈ I

If I is the set of valid items for some viable prefix γ, then GOTO(I,X) is
the set of valid items for the viable prefix γX.
GOTO(I,X) represents state after recognizing X in state I.

function GOTO(I,X)
let J be the set of items [A→ αX •β ]

such that [A→ α •Xβ ] ∈ I
return CLOSURE(J)
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Building the LR(0) item sets

We start the construction with the item [S′→•S$], where
S′ is the start symbol of the augmented grammar G′
S is the start symbol of G
$ represents EOF

To compute the collection of sets of LR(0) items

function items(G′)
s0← CLOSURE({[S′→•S$]})
C←{s0}
repeat

for each set of items s ∈ C
for each grammar symbol X

if GOTO(s,X) 6= φ and GOTO(s,X) 6∈ C
add GOTO(s,X) to C

until no more item sets can be added to C
return C
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LR(0) example

1 S → E$
2 E → E+T
3 | T
4 T → id
5 | (E)

The corresponding CFSM:

0 5 6

1

2

3

4

7

8

9

T

T

EE

T

(

(

)$

id

id id

+ +

(

I0 : S→•E$
E→•E+T
E→•T
T→•id
T→•(E)

I1 : S→ E •$
E→ E •+T

I2 : S→ E$•
I3 :E→ E+•T

T→•id
T→•(E)

I4 :E→ E+T•
I5 : T→ id•
I6 : T→ (•E)

E→•E+T
E→•T
T→•id
T→•(E)

I7 : T→ (E•)
E→ E •+T

I8 : T→ (E)•
I9 :E→ T•
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Constructing the LR(0) parsing table

1 construct the collection of sets of LR(0) items for G′
2 state i of the CFSM is constructed from Ii

1 [A→ α •aβ ] ∈ Ii and GOTO(Ii,a) = Ij
⇒ ACTION[i,a]← “shift j”

2 [A→ α•] ∈ Ii,A 6= S′
⇒ ACTION[i,a]← “reduce A→ α”, ∀a

3 [S′→ S$•] ∈ Ii
⇒ ACTION[i,a]← “accept”, ∀a

3 GOTO(Ii,A) = Ij
⇒ GOTO[i,A]← j

4 set undefined entries in ACTION and GOTO to “error”
5 initial state of parser s0 is CLOSURE([S′→•S$])
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LR(0) example

0 5 6

1

2

3

4

7

8

9

T

T

EE

T

(

(

)$

id

id id

+ +

(

state ACTION GOTO
id ( ) + $ S E T

0 s5 s6 – – – – 1 9
1 – – – s3 s2 – – –
2 acc acc acc acc acc – – –
3 s5 s6 – – – – – 4
4 r2 r2 r2 r2 r2 – – –
5 r4 r4 r4 r4 r4 – – –
6 s5 s6 – – – – 7 9
7 – – s8 s3 – – – –
8 r5 r5 r5 r5 r5 – – –
9 r3 r3 r3 r3 r3 – – –
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Conflicts in the ACTION table

If the LR(0) parsing table contains any multiply-defined ACTION
entries then G is not LR(0)
Two conflicts arise:

shift-reduce: both shift and reduce possible in same item
set
reduce-reduce: more than one distinct reduce action
possible in same item set

Conflicts can be resolved through lookahead in ACTION. Consider:
A→ ε | aα

⇒ shift-reduce conflict
a:=b+c*drequires lookahead to avoid shift-reduce conflict after shifting c
(need to see * to give precedence over +)
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SLR(1): simple lookahead LR

Add lookaheads after building LR(0) item sets
Constructing the SLR(1) parsing table:

1 construct the collection of sets of LR(0) items for G′
2 state i of the CFSM is constructed from Ii

1 [A→ α •aβ ] ∈ Ii and GOTO(Ii,a) = Ij
⇒ ACTION[i,a]← “shift j”, ∀a 6= $

2 [A→ α•] ∈ Ii,A 6= S′
⇒ ACTION[i,a]← “reduce A→ α”, ∀a ∈ FOLLOW(A)

3 [S′→ S•$] ∈ Ii

⇒ ACTION[i,$]← “accept”
3 GOTO(Ii,A) = Ij
⇒ GOTO[i,A]← j

4 set undefined entries in ACTION and GOTO to “error”
5 initial state of parser s0 is CLOSURE([S′→•S$])
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From previous example

1 S → E$
2 E → E+T
3 | T
4 T → id
5 | (E)

0 5 6

1

2

3

4

7

8

9

T

T

EE

T

(

(

)$

id

id id

+ +

(

FOLLOW(E) = FOLLOW(T) = {$,+,)}
state ACTION GOTO

id ( ) + $ S E T

0 s5 s6 – – – – 1 9
1 – – – s3 acc – – –
2 – – – – – – – –
3 s5 s6 – – – – – 4
4 – – r2 r2 r2 – – –
5 – – r4 r4 r4 – – –
6 s5 s6 – – – – 7 9
7 – – s8 s3 – – – –
8 – – r5 r5 r5 – – –
9 – – r3 r3 r3 – – –
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Example: A grammar that is not LR(0)

1 S → E$
2 E → E+T
3 | T
4 T → T ∗F
5 | F
6 F → id
7 | (E)

FOLLOW

E {+,),$}
T {+,∗,),$}
F {+,∗,),$}

I0 : S→•E$
E→•E+T
E→•T
T→•T ∗F
T→•F
F→•id
F→•(E)

I1 : S→ E •$
E→ E •+T

I2 : S→ E$•
I3 : E→ E+•T

T→•T ∗F
T→•F
F→•id
F→•(E)

I4 : T→ F•
I5 : F→ id•

I6 : F→ (•E)
E→•E+T
E→•T
T→•T ∗F
T→•F
F→•id
F→•(E)

I7 : E→ T•
T→ T •∗F

I8 : T→ T ∗•F
F→•id
F→•(E)

I9 : T→ T ∗F•
I10 : F→ (E)•
I11 : E→ E+T•

T→ T •∗F
I12 : F→ (E•)

E→ E •+T
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Example: But it is SLR(1)

state ACTION GOTO
+ ∗ id ( ) $ S E T F

0 – – s5 s6 – – – 1 7 4
1 s3 – – – – acc – – – –
2 – – – – – – – – – –
3 – – s5 s6 – – – – 11 4
4 r5 r5 – – r5 r5 – – – –
5 r6 r6 – – r6 r6 – – – –
6 – – s5 s6 – – – 12 7 4
7 r3 s8 – – r3 r3 – – – –
8 – – s5 s6 – – – – – 9
9 r4 r4 – – r4 r4 – – – –
10 r7 r7 – – r7 r7 – – – –
11 r2 s8 – – r2 r2 – – – –
12 s3 – – – s10 – – – – –
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Example: A grammar that is not SLR(1)

Consider:
S → L = R
| R

L → ∗R
| id

R → L

Its LR(0) item sets:
I0 : S′→•S$

S→•L = R
S→•R
L→•∗R
L→•id
R→•L

I1 : S′→ S•$
I2 : S→ L•= R

R→ L•
I3 : S→ R•
I4 : L→ id•

I5 : L→∗•R
R→•L
L→•∗R
L→•id

I6 : S→ L = •R
R→•L
L→•∗R
L→•id

I7 : L→∗R•
I8 :R→ L•
I9 : S→ L = R•

Now consider I2: = ∈ FOLLOW(R) (S⇒ L = R⇒∗R = R)
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LR(1) items

Recall: An LR(k) item is a pair [α,β ], where
α is a production from G with a • at some position in the RHS,

marking how much of the RHS of a production has been seen
β is a lookahead string containing k symbols (terminals or $)

What about LR(1) items?
All the lookahead strings are constrained to have length 1
Look something like [A→ X •YZ,a]
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LR(1) items

What’s the point of the lookahead symbols?
carry along to choose correct reduction when there is a choice
lookaheads are bookkeeping, unless item has • at right end:

in [A→ X •YZ,a], a has no direct use
in [A→ XYZ•,a], a is useful

allows use of grammars that are not uniquely invertible†

The point: For [A→ α•,a] and [B→ α•,b], we can decide between
reducing to A or B by looking at limited right context

†No two productions have the same RHS
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closure1(I)

Given an item [A→ α •Bβ ,a], its closure contains the item and any
other items that can generate legal substrings to follow α.
Thus, if the parser has viable prefix α on its stack, the input should
reduce to Bβ (or γ for some other item [B→•γ,b] in the closure).

function closure1(I)
repeat

if [A→ α •Bβ ,a] ∈ I
add [B→•γ,b] to I, where b ∈ FIRST(βa)

until no more items can be added to I
return I
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goto1(I)

Let I be a set of LR(1) items and X be a grammar symbol.
Then, GOTO(I,X) is the closure of the set of all items

[A→ αX •β ,a] such that [A→ α •Xβ ,a] ∈ I

If I is the set of valid items for some viable prefix γ, then GOTO(I,X) is
the set of valid items for the viable prefix γX.
goto(I,X) represents state after recognizing X in state I.

function goto1(I,X)
let J be the set of items [A→ αX •β ,a]

such that [A→ α •Xβ ,a] ∈ I
return closure1(J)
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Building the LR(1) item sets for grammar G

We start the construction with the item [S′→•S,$], where
S′ is the start symbol of the augmented grammar G′
S is the start symbol of G
$ represents EOF

To compute the collection of sets of LR(1) items

function items(G′)
s0← closure1({[S′→•S,$]})
C←{s0}
repeat

for each set of items s ∈ C
for each grammar symbol X

if goto1(s,X) 6= φ and goto1(s,X) 6∈ C
add goto1(s,X) to C

until no more item sets can be added to C
return C
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Constructing the LR(1) parsing table

Build lookahead into the DFA to begin with
1 construct the collection of sets of LR(1) items for G′
2 state i of the LR(1) machine is constructed from Ii

1 [A→ α •aβ ,b] ∈ Ii and goto1(Ii,a) = Ij
⇒ ACTION[i,a]← “shift j”

2 [A→ α•,a] ∈ Ii,A 6= S′
⇒ ACTION[i,a]← “reduce A→ α”

3 [S′→ S•,$] ∈ Ii
⇒ ACTION[i,$]← “accept”

3 goto1(Ii,A) = Ij
⇒ GOTO[i,A]← j

4 set undefined entries in ACTION and GOTO to “error”
5 initial state of parser s0 is closure1([S′→•S,$])
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Back to previous example (6∈ SLR(1))

S → L = R
| R

L → ∗R
| id

R → L

I0 : S′→•S, $
S→•L = R, $
S→•R, $
L→•∗R, =
L→•id, =
R→•L, $
L→•∗R, $
L→•id, $

I1 : S′→ S•, $
I2 : S→ L•= R, $

R→ L•, $
I3 : S→ R•, $
I4 : L→∗•R, = $

R→•L, = $
L→•∗R, = $
L→•id, = $

I5 : L→ id•, = $
I6 : S→ L = •R, $

R→•L, $
L→•∗R, $
L→•id, $

I7 : L→∗R•, = $
I8 : R→ L•, = $
I9 : S→ L = R•, $
I10 : R→ L•, $
I11 : L→∗•R, $

R→•L, $
L→•∗R, $
L→•id, $

I12 : L→ id•, $
I13 : L→∗R•, $

I2 no longer has shift-reduce conflict: reduce on $, shift on =
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Example: back to SLR(1) expression grammar

In general, LR(1) has many more states than LR(0)/SLR(1):

1 S → E
2 E → E+T
3 | T

4 T → T ∗F
5 | F
6 F → id
7 | (E)

LR(1) item sets:
I0 :

S→•E, $
E→•E+T,+$
E→•T, +$
T→•T ∗F, ∗+$
T→•F, ∗+$
F→•id, ∗+$
F→•(E), ∗+$

I′0 :shifting (
F→ (•E), ∗+$
E→•E+T,+)
E→•T, +)
T→•T ∗F, ∗+)
T→•F, ∗+)
F→•id, ∗+)
F→•(E), ∗+)

I′′0 :shifting (
F→ (•E), ∗+)
E→•E+T,+)
E→•T, +)
T→•T ∗F, ∗+)
T→•F, ∗+)
F→•id, ∗+)
F→•(E), ∗+)
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Another example

Consider:
0 S′ → S
1 S → CC
2 C → cC
3 | d

state ACTION GOTO
c d $ S C

0 s3 s4 – 1 2
1 – – acc – –
2 s6 s7 – – 5
3 s3 s4 – – 8
4 r3 r3 – – –
5 – – r1 – –
6 s6 s7 – – 9
7 – – r3 – –
8 r2 r2 – – –
9 – – r2 – –

LR(1) item sets:
I0 : S′→•S, $

S→•CC, $
C→•cC, cd
C→•d, cd

I1 : S′→ S•, $
I2 : S→ C •C, $

C→•cC, $
C→•d, $

I3 :C→ c•C, cd
C→•cC, cd
C→•d, cd

I4 :C→ d•, cd
I5 : S→ CC•, $
I6 :C→ c•C, $

C→•cC, $
C→•d, $

I7 :C→ d•, $
I8 :C→ cC•, cd
I9 :C→ cC•, $
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LALR(1) parsing

Define the core of a set of LR(1) items to be the set of LR(0) items
derived by ignoring the lookahead symbols.
Thus, the two sets

{[A→ α •β ,a], [A→ α •β ,b]}, and
{[A→ α •β ,c], [A→ α •β ,d]}

have the same core.
Key idea:

If two sets of LR(1) items, Ii and Ij, have the same core, we
can merge the states that represent them in the ACTION and
GOTO tables.
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LALR(1) table construction

To construct LALR(1) parsing tables, we can insert a single step into
the LR(1) algorithm

(1.5) For each core present among the set of LR(1) items, find
all sets having that core and replace these sets by their
union.
The goto function must be updated to reflect the
replacement sets.

The resulting algorithm has large space requirements, as we still are
required to build the full set of LR(1) items.
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LALR(1) table construction

The revised (and renumbered) algorithm
1 construct the collection of sets of LR(1) items for G′
2 for each core present among the set of LR(1) items, find all sets

having that core and replace these sets by their union (update the
goto1 function incrementally)

3 state i of the LALR(1) machine is constructed from Ii.
1 [A→ α •aβ ,b] ∈ Ii and goto1(Ii,a) = Ij
⇒ ACTION[i,a]← “shift j”

2 [A→ α•,a] ∈ Ii,A 6= S′
⇒ ACTION[i,a]← “reduce A→ α”

3 [S′→ S•,$] ∈ Ii ⇒ ACTION[i,$]← “accept”
4 goto1(Ii,A) = Ij ⇒ GOTO[i,A]← j
5 set undefined entries in ACTION and GOTO to “error”
6 initial state of parser s0 is closure1([S′→•S,$])
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Example

Reconsider:

0 S′ → S
1 S → CC
2 C → cC
3 | d

Merged states:
I36 : C→ c•C, cd$

C→•cC, cd$
C→•d, cd$

I47 : C→ d•, cd$
I89 : C→ cC•, cd$

I0 : S′→•S, $
S→•CC, $
C→•cC, cd
C→•d, cd

I1 : S′→ S•, $
I2 : S→ C •C, $

C→•cC, $
C→•d, $

I3 : C→ c•C, cd
C→•cC, cd
C→•d, cd

I4 : C→ d•, cd
I5 : S→ CC•, $

I6 : C→ c•C, $
C→•cC, $
C→•d, $

I7 : C→ d•, $
I8 : C→ cC•, cd
I9 : C→ cC•, $

state ACTION GOTO
c d $ S C

0 s36 s47 – 1 2
1 – – acc – –
2 s36 s47 – – 5

36 s36 s47 – – 8
47 r3 r3 r3 – –
5 – – r1 – –

89 r2 r2 r2 – –
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More efficient LALR(1) construction

Observe that we can:
represent Ii by its basis or kernel:
items that are either [S′→•S,$]
or do not have • at the left of the RHS
compute shift, reduce and goto actions for state derived from Ii

directly from its kernel

This leads to a method that avoids building the complete canonical
collection of sets of LR(1) items

Self reading: Section 4.7.5 Dragon book
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The role of precedence

Precedence and associativity can be used to resolve shift/reduce
conflicts in ambiguous grammars.

lookahead with higher precedence⇒ shift
same precedence, left associative⇒ reduce

Advantages:
more concise, albeit ambiguous, grammars
shallower parse trees⇒ fewer reductions

Classic application: expression grammars
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The role of precedence

With precedence and associativity, we can use:

E → E ∗E
| E/E
| E+E
| E−E
| (E)
| -E
| id
| num

This eliminates useless reductions (single productions)
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Error recovery in shift-reduce parsers

The problem
encounter an invalid token
bad pieces of tree hanging from stack
incorrect entries in symbol table

We want to parse the rest of the file
Restarting the parser

find a restartable state on the stack
move to a consistent place in the input
print an informative message to stderr (line number)
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Error recovery in yacc/bison/Java CUP

The error mechanism
designated token error
valid in any production
error shows synchronization points

When an error is discovered
pops the stack until error is legal
skips input tokens until it successfully shifts 3 (some default value)
error productions can have actions

This mechanism is fairly general

Read the section on Error Recovery of the on-line CUP manual
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Example

Using error
stmt list : stmt

| stmt list ; stmt
can be augmented with error
stmt list : stmt

| error
| stmt list ; stmt

This should
throw out the erroneous statement
synchronize at “;” or “end”
invoke yyerror("syntax error")

Other “natural” places for errors
all the “lists”: FieldList, CaseList
missing parentheses or brackets (yychar)
extra operator or missing operator
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Left versus right recursion

Right Recursion:
needed for termination in
predictive parsers
requires more stack space
right associative operators

Left Recursion:
works fine in bottom-up
parsers
limits required stack space
left associative operators

Rule of thumb:
right recursion for top-down
parsers
left recursion for bottom-up
parsers

Left recursive grammar:

E→ E+T|E
T→ T ∗F|F
F→ (E)+ Int

After left recursion removal

E→ TE′

E′→ +TE′|ε
T→ FT ′

T ′→ ∗FT ′|ε
F→ (E)+ Int

Parse the string 3 + 4 + 5
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Parsing review

Recursive descent
A hand coded recursive descent parser directly encodes a
grammar (typically an LL(1) grammar) into a series of mutually
recursive procedures. It has most of the linguistic limitations of
LL(1).
LL(k)
An LL(k) parser must be able to recognize the use of a production
after seeing only the first k symbols of its right hand side.
LR(k)
An LR(k) parser must be able to recognize the occurrence of the
right hand side of a production after having seen all that is derived
from that right hand side with k symbols of lookahead.
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Grammar hierarchy

LR(k) > LR(1) > LALR(1) > SLR(1) > LR(0)
LL(k) > LL(1) > LL(0)
LR(0) > LL(0)
LR(1) > LL(1)
LR(k) > LL(k)
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